Utilização de Modelos Autoregressivos na Quantificação de Incertezas em Problemas de Transporte Linear

Thiago Jordem Pereira, Helio Pedro Amaral Souto

Abstract


O fenômeno físico do processo de escoamentos de traçadores em um meio poroso heterogêneo é modelado por um sistema de equações diferenciais parciais, sujeitas a certas condições de contorno e inicial. As variações significativas das propriedades do meio poroso (porosidade e permeabilidade) são responsáveis pela introdução das incertezas contidas no modelo matemático. Com intuito de reduzir as incertezas dos modelos geológicos, deferentes metodologias tem sido desenvolvidas e testadas em diversos problemas de escoamentos de fluidos em meios porosos heterogêne. O objetivo deste trabalho é o estudo da quantificação de incertezas em problemas de escoamentos de traçadores em meios porosos heterogêneos empregando uma abordagem Bayesiana para a seleção dos campos de permeabilidades, baseada em um conjunto de medições da concentração do traçador em pontos específicos do meio poroso. O método da Soma Sucessiva de Campos Gaussianos Independentes (SSCGI) é utilizado na parametrização das incertezas contidas nos meios porosos heterogêneos. Na resolução do problema inverso, utiliza-se um método do tipo Monte Carlo via Cadeias de Markov a dois estágios. Através deste procedimento, gera-se uma cadeia Markov que converge para a distribuição estacionária, que neste caso é a distribuição a posteriori de interesse. Para a construções das cadeias de Markov, são utilizados modelos autoregressivos. Resultados numéricos são apresentados para um conjunto de realizações dos campos de permeabilidades.

References


J. Aquino, A. S. Francisco, F. Pereira, H. P. Amaral Souto, Numerical simulation of transient water infiltration in heterogeneous soils combining central schemes and mixed finite elements, Communications in Numerical Methods in Eng. 23(2007), 491–505.

J. Aquino, A. S. Francisco, F. Pereira, H. P. Amaral Souto, A hybrid method for the simulation of radionuclide contaminant plumes in heterogeneous unsaturated formations, Progress in Nuclear Energy, 53 (2011), 1159–1166.

G. R. Barth, T. H. Illangasekare, M. C. Hill, H. Rajaram, A New Tracer-density Criterion for Heterogeneous Porous Media, Water Resources Research, 37, No.1 (2001), 21–31.

M. R. Borges, F. Pereira, F. Furtado H. P. Amaral Souto, Scaling analysis forthe tracer flow problem in self-similar permeability fields, Scaling analysis forthe tracer flow problem in self-similar permeability fields, 7, No. 3 (2008), 1130–1147.

M. R. Borges, F. Pereira, H. P. Amaral Souto, Efficient generation of multi-scalerandom fields: A hierarchical approach, International Journal for NumericalMethods in Biomedical Engineering, 26 (2010), 176–189.

J. A. Chrsitien, C. Fox, Markov chain Monte Carlo using an approximation,Journal of Computational and Graphical Statistics, 14, No. 4 (2005), 795–810.

M. C. C. Cunha, Métodos numéricos, Journal of Computational and GraphicalStatistics, 14, No. 4 (2005), 795–810.

M. C. C. Cunha, “Métodos numéricos”, Editora da UNICAMP, Campinas, 2000.

L. J. Durlofsky, Coarse Scale Models of two Phase in Heterogenous Reservoirs:Volume Averaged Equations and Their Relationship to the Existing UpscalingTechniques, Computational Geosciences, 2, No. 2 (1998), 73–92.

C. Douglas, Y. Efendiev, R. Ewing, V. Ginting, R. Lazarov, Dynamic Data Drive Simulations in Stochastic Environments, Computing, 77 (2006), 321–333.

J. Douglas Jr, F. Pereira, L. M. Yeh, A Locally Conservative Eulerian-

Lagrangian Numerical Method its Aplication to nonlinear transport in Porous Media, Computational Geosciences, 4 (2000), 1–40.

Y. Efendiev, A. Datta-Gupta, V. Ginting, X. Ma, B. Mallick, An Efficient

Two-Stage Markov Chain Monte Carlo Method for Dynamic Data Integration, Water Resources Research, 41, No. 12 (2005).

Y. Efendiev, T. Hou, W. Lou, Proconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models, SIAM J. Sci. Comput, 2, No. 2 (2006), 776–803.

Y. Efendiev, A. Millick, A. Datta-Gupta, Bayesian Uncertainty Quantification for Flows in Heterogeneus Porous Media Using Reversible Jump Markov Chain Monte Carlo Methods, Advances in Water Resources, 33, No. 3 (2010), 241-256.

P. Engesgaard, K. H. Jensen, J. Molson, E. O. Frind, H. Olsen, Large-scale Dispersion in a Sandy Aquifer: Simulation of Subsurface Transport of Envionmental Tritium, Water Resources Research, 32, No. 11 (1996), 3253–3266.

D. Gamerman, H. F. Lopes, “Markov Chain Monte Carlo: Stochastic Simulation

for Bayesian Inference”, Texts in Statistical Science, Second Edition, Chapman& Hall/CRC, 2006.

K. H. Jensen, K. Bitsch, P. L. Bjerd, Large-scale dispersion experiments in a sandy aquifer in Denmark: Observed tracer movements and numerical analyses, Water Resources Research, 29, No. 3 (1993), 673–696.

A. F. Loula, J. N. C. Guerreiro, F. L. B. Ribeiro, L. Landau, Tracer Injection Simulations by Finite Element Methods, Society of Petroleum Engineers, 4, No. 1 (1996), 150–156.

A. F. Loula, E. L. M. Garcia, A. L. G. A. Coutinho, Miscible Displacement Simulation by Finite Element Method in Distributed Memory Machines, Computer Methods in Applied Mechanics and Engineering, 174 (1999), 339–354.

A. Mondal, Y. Efendiev, A. Millick, A. Datta-Gupta, Bayesian Uncertainty Quantification for Flows in Heterogeneus Porous Media Using Reversible Jump Markov Chain Monte Carlo Methods, Advances in Water Resources, 33, No. 3 (2010), 241–256.

G. Victor, P. Felipe, P. Michael, W. Shaochang, Application of the two-stage Markov chain Monte Carlo method for characterization of fractured reservoirs using a surrogate flow model, Computational Geosciences, 15, No. 4 (2011), 691–707.

T. Ptak, M. Piepenbrink, E. Martac, Tracer tests for the investigation of heterogeneous porous media and stochastic modelling of flow and transport - a review of some recent developments, Journal of Hydrology, 294 (2004), 122–163.




DOI: https://doi.org/10.5540/tema.2016.017.01.0055

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.



Trends in Computational and Applied Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

 

Indexed in:

                       

 

Desenvolvido por:

Logomarca da Lepidus Tecnologia