On the Continuous-Time Complementarity Problem
DOI:
https://doi.org/10.5540/tcam.2024.025.e01768Palavras-chave:
continuous-time complementarity problem, variational inequalities problem, continuous-time programming problemsResumo
This work deals with solving continuous-time nonlinear complementarity problems defined on two types of nonempty closed convex cones: a polyhedral cone (positive octant) and a second-order cone. Theoretical results that establish a relationship between such problems and the variational inequalities problem are presented. We show that global minimizers of an unconstrained continuous-time programming problem are solutions to the continuous-time nonlinear complementarity problem. Moreover, a relation is set up
so that a stationary point of an unconstrained continuous-time programming problem, in which the objective function involves the Fischer-Burmeister function, is a solution for the continuous-time complementarity problem. To guarantee the validity of the K.K.T. conditions for some auxiliary continuous-time problems which appear during the theoretical development, we use the linear independence constraint qualification. These constraint qualification are posed in the continuous-time context and appeared in the literature recently. In order to exemplify the developed theory, some simple examples are presented throughout the text.
Referências
R. W. Cottle, "Nonlinear programs with positively bounded jacobians", SIAM Journal on Applied Mathematics, vol. 14, no. 1, pp. 147-158, 1966.
W. Dorn, "Self-dual quadratic programs",Journal of the Society for Industrial and Applied Mathematics, vol. 9, no. 1, pp. 51-54, 1961.
C. E. Lemke, "Bimatrix equilibrium points and mathematical programming", Management science, vol. 11, no. 7, pp. 681-689, 1965.
P. Du Val, "The unloading problem for plane curves", American Journal of Mathematics, vol. 62, no. 1, pp. 307-311, 1940.
G. Isac, Complementarity problems. Springer, 2006.
S. Karamardian, "The nonlinear complementarity problem with applications, part 1", Journal of Optimization Theory and Applications, vol. 4, pp. 87-98, 1969.
E. P. Bodo and M. A. Hanson, "A class of continuous nonlinear complementarity problems", Journal of Optimization Theory and Applications, vol. 24, no. 2, pp. 243-262, 1978.
R. Cottle, F. Giannessi, and J.-L. Lions, "Variational inequalities and complementarity problems: theory and applications". John Wiley & Sons, 1980.
Y.-P. Fang and N.-J. Huang, "Strong vector variational inequalities in banach spaces", Applied Mathematics Letters, vol. 19, no. 4, pp. 362-368, 2006.
G. Lee, D. Kim, B. Lee, and G.-Y. Chen, "Generalized vector variational inequality and its duality for set-valued maps", Applied Mathematics Letters, vol. 11, no. 4, pp. 21-26, 1998.
X. Yang, "Vector variational inequality and its duality", Nonlinear Analysis: Theory, Methods & Applications, vol. 21, no. 11, pp. 869-877, 1993.
G. Zalmai, "Generalized suffciency criteria in continuous-time programming with application to a class of variational-type inequalities", Journal of mathematical analysis and applications, vol. 153, no. 2, pp. 331-355, 1990.
A. Fischer, "A special newton-type optimization method", Optimization,
vol. 24, no. 3-4, pp. 269-284, 1992.
M. R. C. Monte and V. A. de Oliveira, "A full rank condition for continuous-time optimization problems with equality and inequality constraints, Trends in Computational and Applied Mathematics, vol. 20, pp. 15-35, 2019.
M. R. C. do Monte and V. A. de Oliveira, "Necessary conditions for continuous-time optimization under the Mangasarian-Fromovitz constraint qualification", Optimization, vol. 69, no. 4, pp. 777-798, 2020.
A. V. Arutyunov, S. E. Zhukovskiy, and B. Marinkovic, "Theorems of the alternative for systems of convex inequalities", Set-Valued and Variational Analysis, vol. 27, no. 1, pp. 51-70, 2019.
R. T. Rockafellar, Convex analysis, vol. 18. Princeton university press, 1970.
R. Andreani, P. Gonçalves, and G. N. Silva, "Discrete approximations for strict convex continuous time problems and duality", Computational & Applied Mathtematics, vol. 23, pp. 81-105, 2004.
M. C. Pullan, "An algorithm for a class of continuous linear programs", SIAM Journal on Control and Optimization, vol. 31, no. 6, pp. 1558-1577, 1993.
G. Weiss, "A simplex based algorithm to solve separated continuous linear programs", Mathematical Programming, vol. 115, no. 1, pp. 151-198, 2008.
C.-F. Wen, Y.-Y. Lur, and H.-C. Lai, "Approximate solutions and error bounds for a class of continuous-time linear programming problems", Optimization, vol. 61, no. 2, pp. 163-185, 2012.
H.-C. Wu, "Solving continuous-time linear programming problems based on the piecewise continuous functions", Numerical Functional Analysis and Optimization, vol. 37, no. 9, pp. 1168-1201, 2016.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Trends in Computational and Applied Mathematics
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NoDerivatives 4.0 International License.
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.