A Discrete-Ordinates Solution for the Strong Evaporation Problem in Rarefied Gas Dynamics

Autores

DOI:

https://doi.org/10.5540/tcam.2021.022.02.00201

Palavras-chave:

Rarefied gas dynamics, Kinetic model, ADO method, Strong evaporation.

Resumo

In this work we solve the nonlinear strong evaporation problem in rarefied gas dynamics. The analysis is based on the BGK model, with three dimensional velocity vector, derived from the Boltzmann equation. We present the complete development of a closed form solution for evaluating density, velocity, temperature perturbations and the heat flux of a gas. Numerical results are presented and discussed.

 

 

Referências

C. S. Scherer, An analytical approach to the strong evaporation problem in rarefied gas dynamics, Z. Angew. Math. Phys., vol. 66, pp. 1821-1833, 2015.

L. B. Barichello and C. E. Siewert, A discrete-ordinates solution for a non-grey model with complete frequency redistribution, JQSRT, vol. 62, pp. 665-675, 1999.

P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems, Phys. Rev., vol. 94, pp. 511-525, 1954.

M. D. Arthur and C. Cercignani, Non-existence of a steady rarefied supersonic flow in a half-space, Z. Angew. Math. Phys., vol. 31, pp. 634-645, 1980.

C. E. Siewert and J. R. Thomas Jr., Strong evaporation into a half space, Z. Angew. Math. Phys., vol. 32, pp. 421-433, 1981.

K. M. Case and P. F. Zweifel, Linear Transport Theory. Massachusetts:

Addison-Wesley, 1967.

C. E. Siewert and J. R. Thomas Jr., Strong evaporation into a half space. ii. the three-dimensional bgk model, Z. Angew. Math. Phys., vol. 33, pp. 202-218, 1982.

S. Chandrasekhar, Radiative Transfer. New York: Dover, 1960.

C. S. Scherer, J. F. Prolo Filho, and L. B. Barichello, An analytical approach to the unified solution of kinetic equations in rarefied gas dynamics. i. flow problems, Z. Angew. Math. Phys., vol. 60, pp. 70-115, 2009.

C. S. Scherer, J. F. Prolo Filho, and L. B. Barichello, An analytical approach to the unified solution of kinetic equations in the rarefied gas dynamics. ii. heat transfer problems, Z. Angew. Math. Phys., vol. 60, pp. 651-687, 2009.

C. S. Scherer and L. B. Barichello, An analytical approach to the unified solution of kinetic equations in rarefied gas dynamics. iii. evaporation and condensation problem, Z. Angew. Math. Phys., vol. 61, pp. 95-117, 2010.

T. Ytrehus, Theory and experiments on gas kinetics in evaporation, in 10th International Symposium on Rarefied Gas Dynamics, pp. 1197-1212, Aspen, 1976.

Y. Sone and H. Sugimoto, Strong evaporation from a plane condensed phase, in Adiabatic Waves in Liquid-Vapor Systems, (Berlin), Springer, 1990.

K. Aoki and N. Masukawa, Gas flows caused by evaporation and condensation on two parallel condensed phases and the negative temperature gradient: Numerical analysis by using a nonlinear kinetic equation, Phys. Fluids, vol. 6, pp. 1379-1395, 1994.

Y. Sone, S. Takata, and F. Golse, Notes on the boundary conditions for fluid dynamic equations on the interface of a gas and its condensed phase, Phys. Fluids, vol. 13, pp. 324-334, 2001.

C. E. Siewert, Heat transfer and evaporation/condensation problems based on the linearized boltzmann equation, Euro. J. Mechanics B/Fluids, vol. 22, pp. 391-408, 2003.

C. Cercignani, The Boltzmann Equation and its Applications. New York: Springer-Verlag, 1988.

M. M. R. Williams, Mathematical Methods in Particle Transport Theory. London: Butterworth, 1971.

C. S. Scherer, Efeitos de Evaporação em Gases Rarefeitos. PhD thesis, Programa de Pós Graduação em Engenharia Mecânica. Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 2009.

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C.

Klema, and C. B. Moler, Matrix Eigensystem Routines - EISPACK Guide.

Berlin: Springer-Verlag, 1976.

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK User's Guide. Philadelphia: SIAM, 1979.

Downloads

Publicado

2021-06-28

Como Citar

Scherer, C. S. (2021). A Discrete-Ordinates Solution for the Strong Evaporation Problem in Rarefied Gas Dynamics. Trends in Computational and Applied Mathematics, 22(2), 179–199. https://doi.org/10.5540/tcam.2021.022.02.00201

Edição

Seção

Artigo Original