Analysis and Numeric Formation of a Stationary Wave

Autores

DOI:

https://doi.org/10.5540/tcam.2025.026.e01414

Palavras-chave:

Structural Health Monitoring, SHM, Acoustic Impedance Tube, Artificial Immune System, Negative Selection Algorithm.

Resumo

Structural health monitoring (SHM) is a system that assesses the state of structures, whether aeronautical, civil or mechanical, and provides a prediction of their remaining life. This has arisen with the need for more economic viability in the monitoring of structures and in fault identification. Thus, this system was defined as a prophylactic, reliable and effective measure against structural failures. This work has as objective the theoretical basis and a bibliographical revision necessary for the execution of the acoustic impedance tube experiment, following the ISO10534-1(1996), as well as numerical simulations. The experimental data are compared with the numerical simulation of the acoustic pressure inside the impedance tube and the artificial immune system is used to characterize the experiment.

Referências

D. C. Oliveira, F. R. Chavarette, and M. L. Lopes, Damage diagnosis in an isotropic structure using an articial immune system algorithm, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 41, no. 11, p. 485, 2019.

S. Hall, The eective management and use of structural health data, in Proceedings of the 2nd International Workshop on Structural Health Monitoring, pp. 265275, 1999.

V. Franco, D. Bueno, M. Brennan, A. Cavalini Jr, C. Gonsalez, and

V. Lopes Jr, Experimental damage location in smart structures using lamb waves approaches, in Brazilian Conference on Dynamics, Control and Their ApplicationsDINCON, pp. 14, 2009.

S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, Self-nonself discrimination in a computer, in Proceedings of 1994 IEEE computer society symposium on research in security and privacy, pp. 202212, Ieee, 1994.

L. N. de Castro, Engenharia imunológica: desenvolvimento e aplicação de ferramentas computacionais inspiradas em sistemas imunológicos articiais, Universidade Estadual de Campinas, Campinas-SP, 2001.

L. N. Castro, L. N. De Castro, and J. Timmis, Articial immune systems: a new computational intelligence approach. Springer Science & Business Media, 2002.

F. P. d. A. Lima, Análise de distúrbios de tensão em sistemas de distribuição de energia elétrica baseada em sistemas imunológicos articiais, 2013.

F. P. d. A. Lima, Diagnóstico de distúrbios de tensão em sistemas de distribuição baseado num sistema imunológico articial com aprendizado continuado, 2016.

S. W. Doebling, C. R. Farrar, M. B. Prime, et al., A summary review of

vibration-based damage identication methods, Shock and vibration digest, vol. 30, no. 2, pp. 91105, 1998.

F. P. d. A. Lima, Monitoramento e identicação de falhas em estruturas aeronáuticas e mecânicas utilizando técnicas de computação inteligente, 2014.

D. W. Bradley and A. M. Tyrrell, Immunotronics-novel nite-state-machine architectures with built-in self-test using self-nonself dierentiation, IEEE Transactions on Evolutionary Computation, vol. 6, no. 3, pp. 227238, 2002.

F. Outa, R.; Chavarette, Caracterização do experimento do tubo de impedância de um microfone, 2015.

S. N. Gerges, Ruído: fundamentos e controle, p. 696, Florianopolis: NR Editora, 2000.

L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of acoustics, Fundamentals of Acoustics, 4th Edition, by Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, pp. 560. ISBN 0-471-84789-5. Wiley-VCH, December 1999., p. 560, 1999.

Downloads

Publicado

2025-04-16

Como Citar

Feliciani Merizio, I., Chavarette, F., Outa, R., Roefero, L., & Moro, T. (2025). Analysis and Numeric Formation of a Stationary Wave. Trends in Computational and Applied Mathematics, 26(1), e01414. https://doi.org/10.5540/tcam.2025.026.e01414

Edição

Seção

Artigo Original