A Trajectory Planning Model for the Manipulation of Particles in Microfluidics
DOI:
https://doi.org/10.5540/tema.2018.019.03.509Palavras-chave:
Trajectory planning, manipulation of particles in microfluidics, Bellman's principleResumo
Many important microfluid applications require the control and transport of particles immersed in a fluid. We propose a model for automatically planning good trajectories from an arbitrary point to a target in the presence of obstacles. It can be used for the manipulation of particles using actuators of mechanical or electrical type. We present the mathematical formulation of the model and a numerical method based on the optimization of travel time through the Bellman's principle. The implementation is focused on square grids such as those built from pixelated images. Numerical simulations show that the trajectory tree produced by the algorithm successfully avoids obstacles and stagnant regions of the fluid domain.Referências
J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Optics communications, vol. 207, no. 1, pp. 169–175, 2002.
Y. Zhou, Y. Wang, and Q. Lin, “A microfluidic device for continuous-flow
magnetically controlled capture and isolation of microparticles,” Journal of
Microelectromechanical Systems, vol. 19, no. 4, pp. 743–751, 2010.
S. Chaudhary and B. Shapiro, “Arbitrary steering of multiple particles independently in an electro-osmotically driven microfluidic system,” IEEE Transactions on Control Systems Technology, vol. 14, no. 4, pp. 669–680, 2006.
I. Tuval, I. Mezić, F. Bottausci, Y. T. Zhang, N. C. MacDonald, and O. Piro,
“Control of particles in microelectrode devices,” Physical review letters, vol. 95, no. 23, pp. 1–4, 2005.
M. Armani, S. Chaudhary, R. Probst, S. Walker, and B. Shapiro, “Control
of microfluidic systems: two examples, results, and challenges,” International Journal of Robust and Nonlinear Control, vol. 15, no. 16, pp. 785–803, 2005.
M. Armani, Z. Cummins, J. Gong, P. Mathai, R. Probst, C. Ropp, E. Waks,
S. Walker, and B. Shapiro, “Feedback control of microflows,” in Feedback Control of MEMS to Atoms, pp. 269–319, Springer, 2012.
R. Probst and B. Shapiro, “Three-dimensional electrokinetic tweezing: device design, modeling, and control algorithms,” Journal of Micromechanics and Microengineering, vol. 21, no. 2, p. 027004, 2011.
S. Cacace, E. Cristiani, and M. Falcone, “Can local single-pass methods solve any stationary hamilton–jacobi–bellman equation?,” SIAM Journal on Scientific Computing, vol. 36, no. 2, pp. A570–A587, 2014.
L. Meacci, F. F. Rocha, A. A. Silva, P. V. Pramiu, and C. G. Buscaglia, “Planejamento de trajetória para a manipulação de partículas em microfluídica,” CQD-Revista Eletrônica Paulista de Matemática, vol. 10, 2017.
E. Cristiani, Numerical methods for optimal control problems: part II: local
single-pass methods for stationary HJ equations. IAC-CNR, Roma, 2013. p.21. Class notes.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais
Autores de artigos publicados no periódico Trends in Computational and Applied Mathematics mantêm os direitos autorais de seus trabalhos. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Os autores concedem ao periódico o direito de primeira publicação.
Propriedade Intelectual e Termos de uso
O conteúdo dos artigos é de responsabilidade exclusiva dos autores. O periódico utiliza a Atribuição Creative Commons (CC-BY) nos artigos publicados. Esta licença permite que os artigos publicados sejam reutilizados sem permissão para qualquer finalidade, desde que o trabalho original seja corretamente citado.
O periódico encoraja os Autores a autoarquivar seus manuscritos aceitos, publicando-os em blogs pessoais, repositórios institucionais e mídias sociais acadêmicas, bem como postando-os em suas mídias sociais pessoais, desde que seja incluída a citação completa à versão do website da revista.