Mathematical Modeling to Perform an Analysis of Social Isolation Periods in the Dissemination of COVID-19
DOI:
https://doi.org/10.5540/tcam.2021.022.04.00595Abstract
The outbreak of COVID-19 has made scientists from all over the world do not measure
efforts to understand the dynamics of the disease caused by this coronavirus. Several mathematical models have been proposed to describe the dynamics and make predictions. This work proposes a mathematical model that includes social isolation of susceptible individuals as a strategy of suppression and mitigation of the disease. The Susceptible-Infectious-Isolated-Recovered-Dead (SIQRD) model is proposed to analyze three important issues about the dynamics of the disease taking into account social isolation: when the isolation should begin? How long to keep the isolation? How to get out of this isolation? To get answers, computer simulations are provided and their results discussed. The results obtained show that beginning social isolation on the 10th or 15th days, after confirmation of the 50th case, and with 70% of the population in isolation, seems to be promising, since the infected curve does not grow much until it enters the isolation and remains at a stable level during the isolation. On the other hand an abrupt release of the social isolation will imply a second peak of infected individuals above the first one, which is not desired. Therefore, the release from social isolation should be gradual.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.