### Rotated Z^n-Lattices via Real Subfields of Q(\zeta_2r)

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

A. A. Andrade, T. Shah & A. Khan. A note on linear codes over semigroup rings. TEMA - Thends in Applied and Computational Mathematics, 12(2) (2011), 79-89.

A. Ansari, T. Shah, Zia Ur-Rahman & A. A. Andrade. Sequences of primitive and non-primitive BCH codes. TEMA - Thends in Applied and Computational Mathematics, 19(2) (2018), 369-389.

A. A. Andrade, C. Alves & T. B. Carlos, Rotated lattices via the cyclotomic field Q(zeta_{2^r}), Internat. J. Appl. Math., 19, 2006, 321-331.

V. Bautista-Ancora & J. Uc-Kuk, The discriminant of Abelian number fields, Rocky Mountain J. Math., 47, 2017, 39-52.

E. Bayer-Fluckiger, Lattices and number fields, Algebraic geometry: Hirzebruch 70, Contemp. Math., 241, Amer. Math. Soc., Providence, RI, 1999, 69-84.

E. Bayer-Fluckiger, F. Oggier & E. Viterbo. New algebraic constructions of rotated Z^n-lattice constellations for the Rayleigh fading channel. IEEE Trans. Inform. Theory, 50 (2004), 702-714.

E. Bayer-Fluckiger, F. Oggier & E. Viterbo. Algebraic lattice constellations: bounds on performance, IEEE Trans. Inform. Theory, 52 (2006), 319-327.

J. Boutros, E. Viterbo, C. Rastello & J. C. Belfiore. Good lattice constellations for both Rayleigh fading and Gaussian channels. IEEE Trans. Inform. Theory, 42 (1996), 502-518.

M. O. Damen, K. Abed-Meraim & J. C. Belfiori. Diagonal algebraic space-time block codes. IEEE Trans. Inform. Theory, 48 (2002), 628-636.

P. Elia, B. A. Sethuraman & P. V. Kumar. Perfect space-time codes for any number of antennas. IEEE Trans. Inform. Theory, 53 (2007), 3853-3868.

S. Lang. Algebra, revised third edition, Springer-Verlag, New York (2003).

A. M. Odlyzko. Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. J.

Théorie des Nombres de Bordeaux 2 (1990), 119-141.

K. H. Rosen. Elementary Number Theory and its Applications, sixth edition, Addison-Wesley, Reading, MA (2011).

L. Washington. Introduction to Cyclotomic Fields, second edition, Springer-Verlag, New York (1997).

DOI: https://doi.org/10.5540/tema.2019.020.03.445

#### Article Metrics

_{Metrics powered by PLOS ALM}

### Refbacks

- There are currently no refbacks.

**TEMA - Trends in Applied and Computational Mathematics**

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

ISSN: 1677-1966 (print version), 2179-8451 (online version)

Indexed in: