A General Boundary Condition with Linear Flux for Advection-Diffusion Models

Tiago Yuzo Miyaoka, João Frederico da Costa Azevedo Meyer, Juliana Marta Rodrigues de Souza


Advection-diffusion equations are widely used in modeling a diverse range of problems. These mathematical models consist in a partial differential equation or system with initial and boundary conditions, which depend on the phenomena being studied. In the modeling, boundary conditions may be neglected and unnecessarily simplified, or even misunderstood, causing a model not to reflect the reality adequately, making qualitative and/or quantitative analyses more difficult. In this work we derive a general linear flux dependent boundary condition for advection-diffusion problems and show that it generates all possible boundary conditions, according to the outward flux on the boundary. This is done through an integral formulation, analyzing the total mass of the system. We illustrate the exposed cases with applications willing to clarify their meanings. Numerical simulations, by means of the Finite Difference Method, are used in order to exemplify the different boundary conditions' impact, making it possible to quantify the flux along the boundary. With qualitative and quantitative analysis, this work can be useful to researchers and students working on mathematical models with advection-diffusion equations.


Boundary conditions; Partial differential equations; Mathematical models; Computer simulation

Full Text:



J. Fourier. Theorie analytique de la chaleur, par M. Fourier. Paris: Chez Firmin Didot, père et fils, (1822).

A. Okubo & S.A. Levin. Diffusion and ecological problems: modern perspectives, vol. 14. New York: Springer Science & Business Media, (2013).

T.L. Bergman, F.P. Incropera, D.P. DeWitt & A.S. Lavine. Fundamentals of heat and mass transfer. Jefferson City: John Wiley & Sons, (2011).

G.I. Marchuk. Mathematical models in environmental problems, vol. 16. North-Holland: Elsevier, (2011).

D.C. Mistro. “O problema da poluição em rios por mercúrio metálico: modelagem e simulação numérica”. Master’s thesis, DMA, IMECC, UNICAMP, Campinas, SP, (1992).

J.F.C.A. Meyer, R.F. Cantão & I.R.F. Poffo. “Oil spill movement in coastal seas: modelling and numerical simulations”. WIT Trans. Ecol. Envir., 27 (1998), 23–32.

E.C.C. Poletti & J.F.C.A. Meyer. “Numerical methods and fuzzy parameters: an environmental im- pact assessment in aquatic systems”. Comput. Appl. Math., pp. 1–12, (2016).

A. Krindges. Modelagem e simulação computacional de um problema tridimensional de difusão-advecção com uso de Navier-Stokes. PhD thesis, DMA, IMECC, UNICAMP, Campinas, SP, (2011).

S.E.P. Castro. “Modelagem matemática e aproximação numérica do estudo de poluentes no ar”. Master’s thesis, DMA, IMECC, UNICAMP, Campinas, SP, (1993).

J.F.C.A. Meyer & G.L. Diniz. “Pollutant dispersion in wetland systems: Mathematical modelling and numerical simulation.” Ecol. Model., 200(3) (2007), 360–370.

D. Buske, M.T. Vilhena, T. Tirabassi & B. Bodmann. “Air pollution steady-state advection-diffusion equation: the general three-dimensional solution”. Journal of Environmental Protection, 3(09) (2012), 1124.

G.L. Diniz. “A mudança no habitat de populações de peixes: de rio a represa – o modelo matemático”. Master’s thesis, DMA, IMECC, UNICAMP, Campinas, SP, (1994).

T.M.V.S. Lacaz. Análises de problemas populacionais intraespecíficos e interespecíficos com difusão densidade-dependente. PhD thesis, DMA, IMECC, UNICAMP , Campinas, SP, (1999).

M.T. Koga. Dinâmica populacional da Mosca-dos-chifres (Haematobia Irritans) em um ambiente com competição: simulações computacionais. PhD thesis, FEEC, UNICAMP, Campinas, SP, (2015).

J.R. Sibert, J. Hampton, D.A. Fournier & P.J. Bills. “An advection-diffusion-reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (katsu-wonus pelamis)”. Can. J. Fish. Aquat. Sci., 56(6) (1999), 925–938.

M.M. Salvatierra. “Modelagem matemática e simulação computacional da presença de materiais impactantes tóxicos em casos de dinâmica populacional com competição inter e intra-espeífica,” Master’s thesis, DMA, IMECC, UNICAMP, Campinas, SP, (2005).

R.C. Sossae. A presença evolutiva de um material impactante e seu efeito no transiente populacional de espécies interativas. PhD thesis, DMA, IMECC, UNICAMP, Campinas, SP, (2003).

D.C. Guaca. “Impacto ambiental em meios aquáticos: modelagem, aproximação e simulação de um estudo na baía de Buenaventura-Colômbia”. Master’s thesis, DMA, IMECC, UNICAMP , Campinas, SP, (2015).

L.C. Abreu. “Influência de poluentes sobre macroalgas na Baía de Sepetiba, RJ: modelagem matemática, análise numérica e simulações computacionais”. Master’s thesis, DMA, IMECC, UNI- CAMP, Campinas, SP, (2009).

L. Torre, P.C.C. Tabares, F. Momo, J.F.C.A. Meyer & R. Sahade. “Climate change effects on antarctic benthos: a spatially explicit model approach”. Climatic Change, 141(4) (2017), 733–746.

S. Pregnolatto. Mal-das-cadeiras em capivaras: estudo, modelagem e simulação de um caso. PhD thesis, DMA, IMECC, UNICAMP, Campinas, SP, (2002).

M. Missio. Modelos de EDP integrados a lógica Fuzzy e métodos probabilísticos no tratamento de incertezas: uma aplicação a febre aftosa em bovinos. PhD thesis, DMA, IMECC, UNICAMP, Campinas, SP, (2008).

J.M.R. Souza. “Estudo da dispersão de risco de epizootias em animais: o caso da influenza aviária”. Dissertação de Mestrado, DMA, IMECC, UNICAMP, Campinas, SP, (2010).

R.S. Cantrell & C. Cosner. “On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains”. J. Differ. Equations, 231(2) (2006), 768–804.

C. Cosner & Y. Lou. “Does movement toward better environments always benefit a population?”. J. Math. Anal. Appl., 277(2) (2003), 489–503.

V. Me ́ ndez, D. Campos, I. Pagonabarraga, & S. Fedotov. “Density-dependent dispersal and population aggregation patterns,” J. Theor. Biol., 309 (2012), 113–120.

N. Shigesada, K. Kawasaki & H.F. Weinberger. “Spreading speeds of invasive species in a periodic patchy environment: effects of dispersal based on local information and gradient-based taxis”. Jpn. J. Ind. Appl. Math., 32(3) (2015), 675–705.

R.S. Cantrell & C. Cosner. Spatial ecology via reaction-diffusion equations. Chichester: John Wiley & Sons, (2004).

B.P. Boudreau. Diagenetic Models and Their Implementation, vol. 505. Berlin: Springer Berlin, (1997).

R.J. LeVeque. Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, vol. 98. Philadelphia: Siam, (2007).

DOI: https://doi.org/10.5540/tema.2017.018.02.0253

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

TEMA - Trends in Applied and Computational Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)
ISSN: 1677-1966  (print version),  2179-8451  (online version)

Indexed in:



Desenvolvido por:

Logomarca da Lepidus Tecnologia