Modelo Multiobjetivo para Seleção de Portfólios com Restrição de Cardinalidade, Custo de Transação e Valor em Risco Condicional

Gustavo Peixoto Hanaoka, Rodrigo T. N. Cardoso, Felipe D. Paiva

Abstract


Este trabalho apresenta um modelo multiobjetivo para seleção de portfólios de ações do mercado financeiro, que leva em consideração a restrição de cardinalidade, os custos de transação e os limites de investimento para cada ativo e para grupos de ativos. As funções-objetivo consideram o valor em risco condicional (CVAR – Conditional Value-at-Risk) como medida de risco e o valor esperado dos retornos históricos ponderados pelas proporções de investimento, descontados os custos de transação. Para a otimização do modelo foi utilizado um algoritmo genético multiobjetivo. Resultados mostram a capacidade do algoritmo em encontrar várias soluções eficientes, bem como a capacidade do modelo em auxiliar a tomada de decisão na escolha de portfólios que apresentem uma boa relação entre risco e retorno, para uma dada cardinalidade. 


Keywords


Multiobjective Optimization; Portfolio Selection; CVaR; Multiobjective Genetic Algorithms.

References


G.J. Alexander & A.M. Baptista. A comparison of var and cvar constraints on portfolio selection with the mean-variance model. Management Science, 50(9) (2004), 1261–1273.

K.P. Anagnostopoulos & G. Mamanis. A portfolio optimization model with three objectives and discrete variables. Computers & Operations Research, 37(7) (2010), 1285–1297.

L.P. Bloomberg. “Historical Stock Price for Ibovespa (data)”, 1/10/13 a 30/12/13. Retirado em 15/12/15, Bloomberg Database.

Índice Bovespa, Abril 2016, disponível em . Acesso em: 1 de Abril de 2016.

J. Branke. Consideration of partial user preferences in evolutionary multiobjective optimization, em “Multiobjective optimization”, pp. 157–178, Springer Berlin, Heidelberg (2008).

T-J Chang, N. Meade, J.E. Beasley & Y.M. Sharaiha. Heuristics for cardinality constrained portfolio optimisation. Computers & Operations Research, 27(13) (2000), 1271–1302.

S.C. Chiam, K.C. Tan & A. Al Mamum. Evolutionary multi-objective portfolio optimization in practical context. International Journal of Automation and Computing, 5(1) (2008), 67–80.

K. Deb. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons (2001).

R.M. Escudero, R.R. Torrubiano & A. Sua ́rez. Selection of optimal investment portfolios with cardinality constraints, em “IEEE Congress on Evolutionary Computation”, pp. 2382–2388, Vancouver, Canada ́ (2006).

P. Krokhmal, J. Palmquist & S. Uryasev. Portfolio optimization with conditional value-at-risk objective and constraints. Journal of Risk, 4 (2002), 43–68.

H. Markowitz. Portfolio selection. Journal of Finance, 7 (1952), 77–91.

N.J. Radcliffe. Genetic set recombination. Foundations of Genetic Algorithms, 2 (1992), 203–220.

R.T. Rockafellar & S. Uryasev. Optimization of conditional value-at-risk. Journal of Risk, 2 (2000), 21–42.

R.T. Rockafellar & S. Uryasev. Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7) (2002), 1443–1471.

D. Roman, K. Darby-Dowman & G. Mitra. Mean-risk models using two risk measures: a multi- objective approach. Quantitative Finance, 7(4) (2007), 443–458.

B. Sawik. Downside risk approach for multi-objective portfolio optimization, em “Operations Rese- arch Proceedings”, Springer Berlin Heidelberg, (2012), 191–196.

H. Soleimani, H.R. Golmakani & M.H. Salimi. Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Systems with Applications, 36(3) (2009), 5058–5063.

R.R. Torrubiano & A. Sua ́rez. A memetic algorithm for cardinality-constrained portfolio optimization with transaction costs. Applied Soft Computing, 36 (2015), 125–142.

E. Zitzler & S. Ku ̈nzli. Indicator-based selection in multiobjective search, em “International Confe- rence on Parallel Problem Solving from Nature”, Springer, (2004), 832–842.

E. Zitzler, M. Laumanns & L. Thiele et al. Spea2: Improving the strength pareto evolutionary algo- rithm. Eurogen, 3242(103) (2001), 95–100.




DOI: http://dx.doi.org/10.5540/tema.2016.017.03.0353

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.



TEMA - Trends in Applied and Computational Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)
ISSN: 1677-1966  (print version),  2179-8451  (online version)

Indexed in:

                        

 

Desenvolvido por:

Logomarca da Lepidus Tecnologia