Um Método Integral de Contorno para a Modelagem da Propagação de Ondas Internas em um Sistema de Dois Fluidos

Mateus Torres Sousa, Daniel Gregorio Alfaro Vigo

Abstract


Este trabalho tem como objetivo utilizar a formulação integral de contorno na construção de um método numérico para modelar a propagação de ondas internas na interface entre dois fluidos. Apresentamos vários exemplos numéricos para ilustrar a acurácia do método proposto e também mostrar sua utilidade na simulação das interações de ondas não lineares.


Keywords


Ondas aquáticas internas, Método da integral de contorno, Discretização do operador Dirichlet-Neumann

References


M. Ablowitz & H. Segur. Solitons and the Inverse Scattering Transform. SIAM, (1981).

K. Atkinson & W. Han. Theoretical Numerical Analysis. Springer Science, (2009).

C. Bardos & A. Fursikov (ed.). Instability in Models Connected with Fluid Flows I, II. Springer, (2008).

L. C. Evans. Partial Differential Equations. 2nd. ed., AMS, (2010).

D. Fructus, D. Clamond, J. Grue & Ø. Kristiansen. An efficient model for three-dimensional surface wave simulations Part I: Free space problems. J. of Computational Physics, 205 (2005), 665–685.

P.A. Guidotti. A first kind boundary integral formulation for the Dirichlet-to-Neumann map in 2D. J. of Computational Physics, 190 (2008), 325–345.

J. Grue. Interfacial Wave Motion of Very Large Amplitude: Formulation in Three Dimensions and Numerical Experiments. Procedia IUTAM, 8 (2013), 129–143.

F. John. Partial Differential Equations. 4th ed., Springer-Verlag, (1982).

A. Nachbin & R. Ribeiro-Junior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete and Continuous Dynamical Systems, 34 (2014), 3135–3153.

R. Massel. Internal Gravity Waves in the Shallow Seas. Springer, (2015).

Yu.Z. Miropolsky & O.D. Shiskina. Dynamics of Internal Gravity Waves in the Ocean. Springer, (2001).

H. Lamb. Hydrodynamics. Cambridge Univ. Press, (1895).

O. Laget & F. Dias. Numerical computation of capillary gravity interfacial solitary waves. J. Fluid Mech., 349 (1997), 221–251.

J-C. Saut. Asymptotic models for surface and internal waves. Publicações matemáticas, Sociedade Brasileira de Matemática, (2013).

L. N. Trefethen. Spectral Methods in MATLAB. SIAM, (2001).

J. Wilkening & V. Vasan. Comparison of five methods of computing the Dirichlet-Neumann operator for the water wave problem. Contemp. Math., 635 (2015), 175–210.

L. Xu & P. Guyenne. Numerical simulation of three-dimensional nonlinear water waves. J. of Computational Physics, 228 (2009), 8446–8466.

Y. Yan & I.H. Sloan. On integral equations of the first kind with logarithmic kernels. J. of Integral Equations and Applications, 1 (1988), 549–579.

V.E. Zakharov & E. Kutznetzov. Hamiltonian formalism for nonlinear waves. Uspekhi Fiz. Nauk, 11 (1997), 1137–1167.




DOI: http://dx.doi.org/10.5540/tema.2017.018.02.0175

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.



TEMA - Trends in Applied and Computational Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)
ISSN: 1677-1966  (print version),  2179-8451  (online version)

Indexed in:

                        

 

Desenvolvido por:

Logomarca da Lepidus Tecnologia