Melhorando o Desempenho Computacional de um Esquema de Diferenças Finitas para as Equações de Maxwell

Leandro Justino Pereira Veloso, Daniel Gregorio Alfaro Vigo, Silvana Rossetto

Abstract


As equações de Maxwell têm um papel crucial na teoria do eletromagnetismo e suas aplicações. Entretanto, nem sempre é possível resolver essas equações de forma analítica. Por isso, precisamos de métodos numéricos para obter soluções aproximadas das equações de Maxwell. O método FDTD (Finite-Diference Time-Domain), proposto por K. Yee, é amplamente usado devido a sua simplicidade e eficiência. No entanto esse método apresenta um alto custo computacional. Neste trabalho, propomos uma implementação paralela do método FDTD para execução em GPUs, usando a plataforma CUDA. Nosso objetivo é reduzir o tempo de processamento requerido para viabilizar o uso do método FDTD para a simulação da propagação de ondas eletromagnéticas. Avaliamos o algoritmo proposto considerando condições de contorno de tipo Dirichlet e também condições absorventes. Obtivemos ganhos de desempenho que variam de 7 a 8 vezes, comparando a implementação paralela proposta com uma versão sequencial otimizada.

Keywords


Equações de Maxwell; Algoritmo de Yee; Programação Paralela com GPU

References


S. Adams, J. Payne & R. Boppana. Finite difference time domain (FDTD) simulations using graphics processors. In DoD High Performance Computing Modernization Program Users Group Conference, pp. 334–338. IEEE (2007).

A. Balevic, L. Rockstroh, A. Tausendfreund, S. Patzelt, G. Goch & S. Simon. Accelerating simula- tions of light scattering based on finite-difference time-domain method with general purpose GPUs. In 11th IEEE International Conference on Computational Science and Engineering, pp. 327–334. IEEE (2008).

J. Berenger. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2) (1994), 185–200.

NVIDIA CUDA, https://developer.nvidia.com/cuda-zone, acessado em 20 de setembro de 2015.

V. Demir & A.Z. Elsherbeni. Compute unified device architecture (CUDA) based finite-difference

time-domain (FDTD) implementation. ACES, 25(4) (2010).

D.D. Donno, A. Esposito, G. Monti, L. Catarinucci & L. Tarricone. GPU-based acceleration of computational electromagnetics codes. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 26(4) (2013), 309–323.

G. El Zein & A. Khaleghi. Emerging Wireless Communication Technologies. In New Technologies, Mobility and Security, pp. 271-279. Springer Netherlands (2007).

J.W. Hand. Modelling the interaction of electromagnetic fields (10 MHz-10 GHz) with the human body: methods and applications. Physics in Medicine and Biology, 53(16) (2008), R243.

M.J. Inman, A.Z. Elsherbeni & C.E. Smith. FDTD calculations using graphical processing units. In IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, pp. 728–731. IEEE (2005).

E. Kashdan & B. Galanti. A new parallelization strategy for solving time dependent 3D Maxwell equations using a high-order accurate compact implicit scheme. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 19(5) (2006), 391–408.

D.B. Kirk & W.H. Wen-mei. Programming massively parallel processors: a hands-on approach. Newnes (2012).

S.E. Krakiwsky, L.E. Turner & M.M. Okoniewski. Acceleration of finite-difference time-domain (FDTD) using graphics processor units (GPU). In IEEE MTT-S International Microwave Symposium Digest, 2, pp. 1033–1036. IEEE (2004).

C.B. Lima. Ana ́lise de dispositivos eletromagne ́ticos para hipertermia usando o me ́todo FDTD. Tese de Doutorado, PGEEL, UFSC, Floriano ́polis, SC (2006).

R.M. Stallman. Using the GNU Compiler Collection. GNU Press (2010).

D.M. Sullivan. Electromagnetic simulation using the FDTD method. John Wiley & Sons (2013).

A. Taflove & S.C. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, London, 2 ed (2000).

A. Valcarce, G. de la Roche & J. Zhang. A GPU approach to FDTD for radio coverage prediction. In 11th IEEE Singapore International Conference on Communication Systems, pp. 1585–1590. IEEE (2008).

K. Yee. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag., 14(3) (1966), 302–307.




DOI: https://doi.org/10.5540/tema.2016.017.01.0093

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.



Trends in Computational and Applied Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

 

Indexed in:

                       

 

Desenvolvido por:

Logomarca da Lepidus Tecnologia