Bifurcações Sela-Nó da Região de Estabilidade de Sistemas Dinâmicos Autônomos não Lineares

Fabíolo Moraes Amaral, Luís Fernando Costa Alberto

Abstract


O comportamento da região de estabilidade de sistemas dinâmicos sujeitos a variação de parâmetros é estudado neste artigo. O comportamento da região de estabilidade e de sua fronteira quando o sistema vai de encontro a uma bifurcação sela-nó do tipo-$k$, com $k\geq 0$ na fronteira da região de estabilidade é investigado. Uma caracterização completa da fronteira da região de estabilidade na vizinhança de um valor de bifurcação sela-nó do tipo-$k$, com $k\geq 0$ é apresentado neste artigo.


References


F.M. Amaral & L.F.C. Alberto. Stability Region Bifurcations of Nonlinear Autonomous Dynami- cal Systems: Type-Zero Saddle-Node Bifurcations. International Journal of Robust and Nonlinear Control, 21(6) (2011), 591–612.

F.M. Amaral & L.F.C. Alberto. Type-zero saddle-node bifurcations and stability region estimation of nonlinear autonomous dynamical systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 22(1) (2012), 1250020-1.

F.M. Amaral, J.R.R. Gouveia Jr. & L.F.C. Alberto. Characterization of saddle-node equilibirum points on the stability boundary of nonlinear autonomous dynamical system. Confereˆncia Brasileira de Dinaˆmica, Controle e Aplicac ̧o ̃es, Anais DINCON, (2013).

H.-D. Chiang, M.W. Hirsch & F.F. Wu. Stability regions of nonlinear autonomous dynamical systems. IEEE Transactions on Automatic Control, 33 (1988), 16–27.

H.-D. Chiang & Chia-Chu. Theorical foundation of the BCU method for direct stability analysis of network-reduction power system models with small transfer conductances. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 42 (1995), 252–265.

J.R.R. Gouveia Jr., F.M. Amaral & L.F.C. Alberto. Stability boundary characterization of non- linear autonomous dynamical systems in the presence of a supercritical Hopf equilibrium point. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 23(12) (2014), 1350196-1.

R.B. de Lima Guedes, L.F.C. Alberto & N.G. Bretas. Power System Low-Voltage Solutions Using an Auxiliary Gradient System for Voltage Collapse Purposes. IEEE Transactions on Power Systems, 20 (2005), 1528–1537.

J. Sotomayor. Generic bifurcations of dynamical systems. Dinamical Systems, (1973), 549–560.

V. Venkatasubramanian, H. Schattler & J. Zaborszky. A taxonomy of the dynamics of large

differential-algebraic systems. Proceedings IEEE, 83 (1995), 1530–1561.




DOI: https://doi.org/10.5540/tema.2016.017.01.0071

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.



Trends in Computational and Applied Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

 

Indexed in:

                       

 

Desenvolvido por:

Logomarca da Lepidus Tecnologia