### A review on some results on local conservation laws for certain evolution equations

#### Abstract

#### Full Text:

PDF (Português (Brasil))#### References

G. W. Bluman and S. Kumei, “Symmetries and Differential Equations”, Applied Mathematical Sciences 81, Springer, New York, (1989).

I. L. Freire, Conservation laws for self-adjoint first order evolution equations, J. Nonlin. Math. Phys., 18, (2011), 279–290.

I. L. Freire, Self-adjoint sub-classes of third and fourth-order evolution equations,Appl. Math. Comp., 217, (2011), 9467–9473.

I. L. Freire, New conservation laws for inviscid Burgers equation, Comp. Appl. Math., (2012), accepted.

I. L. Freire, New classes of nonlinearly self-adjoint evolution equations of third- and fifth-order, Commun. Nonlinear Sci. Numer. Simulat., (2012), http://dx.doi.org/10.1016/j.cnsns.2012.08.022

I. L. Freire and J. C. S. Sampaio, Nonlinear self-adjointness of a generalized fifth-order KdV equation, J. Phys. A: Math. Theor., 45, (2012), 032001.

I. L. Freire and J. C. S. Sampaio, Conservation laws for Kawahara equations, Anais do XXXIV CNMAC, (2012).

M. L. Gandarias, Weak self-adjoint differential equations, J. Phys. A, 44, 262001, (2011).

M. L. Gandarias, Weak self-adjointness and conservation laws for a porous medium equation, Commun. Nonlinear Sci. Num. Sci., 17, 2342–2349, (2012).

M. L. Gandarias, M. Redondo, M. S. Bruzón, Some weak self-adjoint Hamilton-Jacobi-Bellman equations arising in financial mathematics, Nonlin. Anal. RWA, 13, 340–347, (2012).

M. L. Gandarias and M. S. Bruzón, Some conservation laws for a forced KdV equation, Nonlin. Anal. RWA, 13 (2012), 2692–2700.

N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 333, (2007), 311–328.

N. H. Ibragimov, M. Torrisi and R. Tracinà, Quasi self-adjoint nonlinear wave equations, J. Phys. A: Math. Theor., 43, 442001-442009, (2010).

N. H. Ibragimov, M. Torrisi and R. Tracinà, Self-adjointness and conservation laws of a generalized Burgers equation, J. Phys. A: Math. Theor., 44, 145201-145206, (2011).

N. H. Ibragimov, Nonlinear self-adjointness and conservation laws, J. Phys. A: Math. Theor., 44, (2011), 432002.

N. H. Ibragimov, Nonlinear self-adjointness in constructing conservation laws, Archives of ALGA, 7/8, (2011), 1–90.

N. H. Ibragimov, “Transformation groups applied to mathematical physics“, Translated from the Russian Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, (1985).

H. Liu, J. Li and L. Liu, Lie symmetry analysis, optimal systems and exact solutions to the fifth-order KdV types of equations, J. Math. Anal. Appl., 368, (2010), 551–558.

R. Naz, F.M. Mahomed and D.P. Mason, Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics, Appl. Math. Comput., 205, (2008), 212–230.

P. J. Olver, “Applications of Lie groups to differential equations”, Springer, New York, (1986).

J. C. S. Sampaio, “Simetrias de Lie e leis de conservação de equações evolutivas do tipo Korteweg-de Vries", Dissertação de Mestrado, Programa de Pós-Graduação em Matemática Aplicada, UFABC, Santo André-SP, (2012).

M. Torrisi and R. Tracinà, Quasi self-adjointness of a class of third order nonlinear dispersive equations, preprint, (2012).

DOI: https://doi.org/10.5540/tema.2013.014.01.0109

#### Article Metrics

_{Metrics powered by PLOS ALM}

### Refbacks

- There are currently no refbacks.

**Trends in Computational and Applied Mathematics**

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

Indexed in: