Subspace Identification for Industrial Processes

S. D. M. Borjas, C. Garcia

Abstract


Subspace identification has been a topic of research along the last years. Methods as MOESP and N4SID are well known and they use the LQ decomposition of certain matrices of input and output data. Based on these methods, it is introduced the MON4SID method, which uses the techniques MOESP and N4SID.

References


H. Akaike, Information theory and an extension of the maximum likelihood principle. In: Second International Symposium on Information Theory, Budapest, Hungary. (B.N. Petrov, F. Csaki, eds.), pp. 267–281, 1973.

T. Backx, “Identification of an Industrial Process: A Markov Parameter Approach”, Ph.D. Thesis, Technical Univ. Eindhoven, The Netherlands, 1987.

S.D.M. Borjas, C. Garcia, Subspace identification using the integration of MOESP and N4SID methods applied to the Shell benchmark of a distillation column, artigo aceito 9th Brazilian Conference on Dynamics Control and their Applications DINCON 2010, Serra Negra/SP Brasil, pp. 57, 2010.

S.D.M. Borjas, C. Garcia, Modelagem de FCC usando métodos de identificação por predição de erro e por subespaços, IEEE América Latina, Revista virtual - na Internet, 2, No. 2 (2004), 108–113.

B. Cott, Introduction to the Process Identification, Workshop at the 1992 Canadian Chemical Engineering Conference, Journal of Process Control, 5, No. 2 (1995), 67–69.

K. De Cock, B. De Moor, Subspace identification methods, in Contribution to section 5.5, Control systems robotics and automation of EOLSS, UNESCO Encyclopedia of life support systems, (Unbehauen H.D.), 1 of 3, Eolss Publishers Co., Ltd., Oxford, UK, pp. 933–979, 2003.

B. De Moor, P. Van Overschee, W. Favoreel, Algorithms for subspace state space system identification - an overview, In Applied and computational control, signal and circuits, (B. Datta Ed.), Vol. 1, pp. 247-311. Birkhauser: Boston (Chapter 6), 1999.

W. Favoreel, B. De Moor, P. Van Overschee, Subspace state space system identification for industrial processes, Journal of Process Control, 10, No. 2-3 (2000), 149–155.

W. Favoreel, S. Van Huffel, B. De Moor, V. Sima, M. Verhaegen, Comparative study between three subspace identification algorithms, Niconet, 1998.

B. Haverkamp, Efficient implementation of subspace method identification algorithms, Niconet, 1999.

B. Haverkamp, M. Verhaegen, “SMI Toolbox: state space model identification software for multivariable dynamical systems”, Vol. 1, Delft University of Technology, The Netherlands, 1997.

T. Katayama, “Subspace Methods for System Identification”, Springer, London, 2005.

W. Larimore, Canonical variate analysis in identification, filtering and adaptive control, In “Proc. 29th Conference on Decision and Control”, Hawai, USA, pp. 596–604, 1990.

W. Larimore, Automated multivariable system identification and industrial applications, In: “American Control Conference, ACC’99”, San Diego, CA, Proceedings, Vol. 2, pp. 1148–1162, 1999.

L. Ljung, “System Identification Theory for the User”, Prentice Hall Englewood Cliffs, NJ, 1999.

G. Mercere, L. Bako S. Lecouche, Propagator-based methods for recursive subspace model identification, Signal Processing, 88, No. 3 (2008), 468-491.

P. Roberto, G. Kurka, H. Cambraia, Application of a multivariable input-output subspace identification technique in structural analysis, Journal of Sound and Vibration, 312, No. 3 (2008), 461–47.

P. Van Overschee B. De Moor, A unifying theorem for three subspace system identification algorithms, Automatica, (Special Issue on Trends in System Identification), 31, No. 12, (1995), 1853–1864.

P. Van Overschee B. De Moor, “Subspace Identification for Linear Systems: Theory, Implementation, Applications”, Dordrecht: Kluwer Academic Publishers, 1996.

M. Verhaegen, P. Dewilde, Subspace model identification. part i: the output-error state-space model identification class of algorithms, International Journal

of Control, 56, No. 1 (1992) 1187–1210.

M. Verhaegen, Identification of the deterministic part of MIMO state space models given in innovation form from input-output data, Automatica (Special issue on Statistical Signal Processing and Control) , 30, No. 1, (1994) 61–74.

M. Viberg, Subspace methods in systems identification. In: 10th IFAC Symposium on System Identification, SYSID’94, Copenhagen, Denmark, Proceedings, Vol. 1, pp. 1–12,1994.

M. Viberg, Subspace-based methods for the identification of linear time-invariant system. Automatica, (Special Issue on Trends in System Identification), 31, No. 12 (1995), 1835-1851.

M. Viberg, Subspace-based state-space system identification, Circuits, Systems and Signal Processing, 21, No. 1 (2002), 23–37.

Y. Zhu, Multivariable process identification for MPC: the asymptotic method and its applications, Journal of Process Control, 8, No. 2, (1998) 101–115.




DOI: https://doi.org/10.5540/tema.2011.012.03.0183

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.



Trends in Computational and Applied Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

 

Indexed in:

                       

 

Desenvolvido por:

Logomarca da Lepidus Tecnologia