Numerical Simulation of 3D Multi-fluid Flows

F.S. SOUSA, N. MANGIAVACCHI, A. CASTELO, L.G. NONATO, M.F. TOMÉ

Abstract


A method to simulate three-dimensional unsteady multi-fluid flows with free surfaces is described. A sharp interface separates incompressible fluids of different density and viscosity. Surface and interface tensions are also considered and the required curvature is approximated at the fronts by a methodology described in [3]. The method is based on the GENSMAC [14] front-tracking method. The velocity field is computed using a finite-difference scheme in an Eulerian grid. The free-surface and the interfaces are represented by an unstructured Lagrangian grid. The method was validated comparing the numerical results with analytical results for a number of simple problems. Other more complex numerical simulations show the robustness of the method, and some comparisons with experimental results are also presented.

References


[1] A.A. Amsden, F.H. Harlow, “The SMAC Method: a Numerical Technique for Calculating Imcompressible Fluid Flows”, Los Alamos Scientific Laboratory, Report LA-4370, 1970.

J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, Journal of Computational Physics, 100 (1992), 335-354.

A. Castelo, N. Mangiavacchi, J.A. Cuminato, A.O. Fortuna, J. Oliveira, M.F. Tomé, S. McKee, Surface Tension Implementation for GENSMAC2D Code, in “COBEM’99”, CD-ROM, 1999.

Li Chen and Yuguo Li, A numerical method for two-phase flow with an interface, Environmental Modelling & Software, 13 (1998), 247-255.

A. Esmaeeli, G. Tryggvason, Direct numerical simulations of bubbly flows, Part 1. Low Reynolds number arrays, J. Fluid Mech., 377 (1998), 313-345.

A. Esmaeeli, G. Tryggvason, Direct numerical simulations of bubbly flows, Part 2. Moderate Reynolds number arrays”, J. Fluid Mech., 385 (1999), 325-358.

V.G. Ferreira, M.F. Tomé, N. Mangiavacchi, A. Castelo, J.A. Cuminato, A.O. Fortuna, High Order Upwinding and the Hydraulic Jump, International Journal for Numerical Methods in Fluids, to appear.

N. Mangiavacchi, A. Castelo, J.A. Cuminato, A.O. Fortuna, M.F. Tomé, L.G. Nonato, S. McKee, Numerical Simulation of Surface Tension Dominated Axisymmetric Free Surface Flows, in “ENCIT”, CD-ROM, 2000.

S. Narayanam, H.J. Groossens, N.W.F. Kossen, Coalescence of two bubbles rising in line at low Reynolds number, Chem. Eng. Sci., 29 (1974), 2071-2082.

F.L.P. Santos, N. Mangiavacchi, A. Castelo, M.F. Tomé, V.G. Ferreira, J.A. Cuminato, Numerical Simulation of Multi-phase Flows Using the FreeFlow-2D System, in “COBEM’2001”, CD-ROM, 2001.

F.S. Sousa, N. Mangiavacchi, A. Castelo, L.G. Nonato, M.F. Tomé, J.A. Cuminato, Simulation of 3D Free-surface Flows with Surface Tension, in “COBEM’2001”, CD-ROM, 2001.

F.S. Sousa, N. Mangiavacchi, A. Castelo, L.G. Nonato, M.F. Tomé, J.A. Cuminato, A mass conserving filter for the simulation of 3D free surface flows with surface tension, in “CILAMCE’2001”, CD-ROM, 2001.

M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions do incompressible two-phase flow, J. Comp. Phys., 114 (1994), 146-159.

M.F. Tomé, S. McKee, GENSMAC: A Computatinal Marker-and-Cell Method for Free Surface Flows in General Domains, Journal of Computational Physics, bf 110, No. 1 (1994), 171-189.

S.O. Unverdi, G. Tryggvason, A Front-Tracking Method for Viscous Incompressible Multi-Fluid Flows, Journal of Comp. Physics, 100 (1991), 25-27.

J.R. Welch, F.H. Harlow, J.P. Shannon, B.J. Daly, “The MAC Method”, Los Alamos Scientific Laboratory, Report LA-3425, 1965.




DOI: https://doi.org/10.5540/tema.2002.03.01.0203

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.



Trends in Computational and Applied Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

 

Indexed in:

                       

 

Desenvolvido por:

Logomarca da Lepidus Tecnologia