Respostas Dinâmicas em Sistemas Discretos Matriciais de Ordem Arbitrária
DOI:
https://doi.org/10.5540/tema.2004.05.01.0077Abstract
Neste trabalho, a resposta impulso é utilizada como ferramenta básica no estudo direto de sistemas discretos LTI de ordem arbitrária. Esta abordagem leva ao desenvolvimento de uma conveniente plataforma para a obtenção de respostas dinâmicas discretas. Em particular, as respostas forçadas são decompostas na soma de uma resposta permanente e de uma resposta livre induzida pelos valores iniciais da resposta permanente. Nas simulações foram considerados vários esquemas de integração numérica, em particular, no modelo de suspensão de um carro, utilizouse o esquema evolutivo de segunda ordem de Numerov.References
[1] L. Brogan, ”Modern Control Theory”, Prentice Hall, New Jersey, 1992.
J.R. Claeyssen e T. Tsukazan, Dynamical Solutions of Linear Matrix Differential Equations, Quarterly of Applied Mathematics, 48, No. 1 (1990).
J.R. Claeyssen, G.C. Suazo e C.R. Jung, A Direct Approach to Second-order Matrix Non-classical Vibrating Equations, Applied Numerical Mathematics, 30 (1999), 65-78.
J.R. Claeyssen e R.A. Soder, A Dynamical Basis for Computing the Modes of Euler-Bernoulli Beams, Journal of Sound and Vibration, 259, No. 4 (2003), 986-900.
J.R. Claeyssen, I. Ferreira e R.D. Copetti, Decomposition of Forced Responses in Vibrating Systems, Applied Numerical Mathematics, 47 (2003), 391-405.
I. Ferreira, J. R. Claeyssen e G. Canahualpa, Convolution with Weighting, Impulse, Transient and Permanent Responses, em “SIAM Meeting in Control, Signals and Linear Algebra”, Boston, 2001.
I. Ferreira, ”Uma Metodologia Unificada no Domínio Tempo para Sistemas Concentrados, Discretos e Distribuídos”, Tese de Doutorado, PROMEC, UFRGS, Porto Alegre, RS, 2002.
I. Ferreira e J.R. Claeyssen, Forced Responses in Continuous and Discrete Systems, em “Anais do 1o. Congresso Temático de Dinâmica, Controle e Aplicações”, São José do Rio Preto, pp. 931-936, SBMAC, 2002.
J.H.Ginsberg, ”Mechanical and Structural Vibrations:Theory and Applications”, John Wiley, New York, 2002.
S.K. Godunov e V.S. Ryabenkii, Difference Schemes - An Introduction to the Underlying Theory, Studies in Mathematics and its Applications, Elsevier, 19 (1987).
E. Hairer, S.P. Norsett e G. Wanner, “Solving Ordinary Differential Equations I”, Springer Series in Computational Mathematics, New York, 1987.
Downloads
Published
How to Cite
Issue
Section
License
Copyright
Authors of articles published in the journal Trends in Computational and Applied Mathematics retain the copyright of their work. The journal uses Creative Commons Attribution (CC-BY) in published articles. The authors grant the TCAM journal the right to first publish the article.
Intellectual Property and Terms of Use
The content of the articles is the exclusive responsibility of the authors. The journal uses Creative Commons Attribution (CC-BY) in published articles. This license allows published articles to be reused without permission for any purpose as long as the original work is correctly cited.
The journal encourages Authors to self-archive their accepted manuscripts, publishing them on personal blogs, institutional repositories, and social media, as long as the full citation is included in the journal's website version.