Produtos de Grafos Z_m-bem-cobertos

Márcia Rodrigues Cappelle Santana, Rommel Melgaço Barbosa

Abstract


Um grafo é $Z_m$-bem-coberto se $|I| \equiv |J|$ (mod m), $m\geq 2,$ para todo $I$, $J$ conjuntos independentes maximais em $V(G)$. Um grafo $G$ é fortemente $Z_m$-bem-coberto se $G$ é um grafo $Z_m$-bem-coberto e $G\backslash \{e\}$ é $Z_m$-bem-coberto, $\forall e \in E(G)$. Um grafo $G$ é $1$-$Z_m$-bem-coberto se $G$ é $Z_m$-bem-coberto e $G\backslash \{v\}$ é $Z_m$-bem-coberto, $\forall v \in V(G)$. Mostramos que os grafos $1$-$Z_m$-bem-cobertos, bem como os fortemente $Z_m$-bem-cobertos, com exceção de $K_1$ e $K_2$, têm cintura $ \leq 5$. Mostramos uma condição necessária e suficiente para que produtos lexicográficos de grafos sejam $Z_m$-bem-cobertos e algumas propriedades para o produto cartesiano de ciclos.

References


M. Asté, F. Havet, C.L. Sales, Grundy number and products of graphs, Discrete Mathematics, 310 (2010), 1482–1490.

R.M. Barbosa, On 1-Zm-well-covered graphs and strongly Zm-well-covered graphs, Ars Combinatoria, 57 (2000), 225–232.

R.M. Barbosa, “Sobre Conjuntos Independentes Maximais em Grafos”, Tese de Doutorado, COPPE-UFRJ, 1999.

R.M. Barbosa, M.N. Ellingham, A characterisation of cubic parity graphs, Australasian Journal of Combinatorics, 28 (2003), 273–293.

R.M. Barbosa, B. Hartnell, Almost parity graphs and claw-free parity graphs, J. Combin. Math. Combin. Comput., 27 (1998), 117–122.

R.M. Barbosa, B. Hartnell, Characterization of Zm-well-covered graphs for some classes of graphs, Discrete Mathematics, 233 (2001), 293–297.

J.A. Bondy, U.S.R. Murty, “Graph Theory”, Graduate Texts in Mathematics, Springer, 2008.

Y. Caro, Subdivisions, parity and well-covered graphs, J. Graph Theory, 25 (1997), 85–94.

Y. Caro, M. Ellingham, J. Ramey, Local structure when all maximal independent sets have equal weight, SIAM J. Discrete Mathematics, 11 (1998), 644–654.

Y. Caro, B. Hartnell, A Characterization of Zm-well-covered graphs of girth 6 or more, J. Graph Theory, 33 (2000), 246–255.

A.O. Fradkin, On the well-coveredness of Cartesian products of graphs, Discrete Mathematics, 309 (2009), 238–246.

R. Hammack, W. Imrich, S. Klavzar “Handbook of Product Graphs”, Second Edition, CRC Press, 2011.

B. Hartnell, Well-covered graphs, J. Combin. Math. Combin. Comput., 29 (1999), 107–115.

R.M. Karp, Reducibility among combinatorial problems, em “Complexity of Computer Computations” (Yorktown Heights), pp. 85-104, Nova York, 1972.

R.J. Nowakowski, K. Seyffarth, Small cycle double covers of products I: Lexicographic product with paths and cycles, J. Graph Theory, 57 (2008), 99–123.

M.R. Pinter, Strongly well-covered graphs, Discrete Mathematics, 132 (1994), 231–246.

J. Topp, L. Volkmann, On the well coveredness of Products of Graphs, Ars Combinatoria, 33 (1992), 199–215.




DOI: https://doi.org/10.5540/tema.2012.013.01.0075

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.



Trends in Computational and Applied Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

 

Indexed in:

                       

         

 

Desenvolvido por:

Logomarca da Lepidus Tecnologia