A Função Barreira Modificada e o Problema de Fluxo de Potência ótimo

E.C. Baptista, V.A. Sousa, G.R.M. Costa

Abstract


Uma nova abordagem para a resolução do problema de Fluxo de Potência Ótimo é apresentada. Fazemos uso de pesquisas recentes, especialmente na área dos métodos de pontos interiores. Nesta abordagem, as restrições de igualdade são tratadas pelo método de Newton e as de desigualdade pelo método de Barreira Modificada. Os testes numéricos, mostram o efetivo desempenho desta metodologia.

References


[1] J.L. Carpentier, Contribution a l’etude du dispatching economique, Bull. Soc. Fr. Elec., Ser. B3 (1962), 431-447.

C.W. Carrol, The created response surface technique for optimizing nonlinear restrained systems, Operations Research, 9 (1961), 169-184.

G.R.M. Costa, Optimal reactive dispatch through primal-dual method, IEEE Transactions on Power Systems, 12, No. 2 (1997), 669-674.

A.V. Fiacco e G.P. McCormick, “Nonlinear Programming: Sequential Unconstrained Minimization Techniques”, John Wiley-Sons, New York, 1968.

K.R. Frisch, “The Logarithmic Potential Method of Convex Programming”, University Institute of Economics (manuscript), Oslo, Norway, 1955.

S. Granville, Optimal reactive dispatch through interior point methods, IEEE Transactions on Power Systems, 9 (1994), 136-146.

N. Karmarkar, A new polynomial-time algorithm for linear programming,Combinatorics, 4 (1984), 373-395.

R. Polyak, Modified barrier functions, Mathematical Programming, 54, No. 2 (1992), 177-222.

D.F. Shanno e R.J. Vanderbei, Interior-point for nonconvex nonlinear programming, Mathematical Programming, 87 (2000), 303-316.

G.L. Torres e V.H. Quintana, Optimal power flow in rectangular form via an interior point method, IEEE Transactions on Power Systems, 13, No. 4 (1998), 1211-1218.

R.J. Vanderbei e D.F. Shanno, An interior-point algorithm for nonconvex nonlinear programming, Computational Optimization and Applications, 13 (1999), 231-252.

M.H. Wright, Why a pure primal Newton barrier step may be infeasible, SIAM Journal on Optimization, 5, No. 1 (1995), 1-12.




DOI: https://doi.org/10.5540/tema.2006.07.01.0021

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.



TEMA - Trends in Applied and Computational Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)
ISSN: 1677-1966  (print version),  2179-8451  (online version)

Indexed in:

                        

 

Desenvolvido por:

Logomarca da Lepidus Tecnologia