ECG Signals Classification Using Overlapping Variables to Detect Atrial Fibrillation

I. G. Ziccardi, A. A. Rey, W. E. Legnani


In the present work a method for the detection of the cardiac pathology known as atrial fibrillation is proposed by calculating different information, statistics and other nonlinear measures over ECG signals. The original database contains records corresponding to patients who are diagnosed with this disease as well as healthy subjects. To formulate the dataset the Rényi permutation entropy, Fisher information measure, statistical complexity, Lyapunov exponent and fractal dimension were calculated, in order to determine how to combine this features to optimize the identification of the signals coming from ECG with the above mentioned cardiac pathology. With the aim to improve the results obtained in previous studies, a classification method based upon decision trees algorithms is implemented. Later a Montecarlo simulation of one thousand trials is performed with a seventy percent randomly selected from the dataset dedicated to train the classifier and the remaining thirty percent reserved to test in every trial. The quality of the classification is assessed through the computation of the area under the receiver operation characteristic curve (ROC), the F1-score and other classical performance metrics, such as the balanced accuracy, sensitivity, specificity, positive and negative predicted values. The results show that the incorporation of all these features to the dataset when are employed to train the classifier in the training task produces the best classification, in such a way that the largest quality parameter is achieved.


Rényi entropy; statistical complexity; Fisher information; Lyapunov exponent; fractal dimension; atrial fibrillation; decision trees

Full Text:



Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Trends in Computational and Applied Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)


Indexed in:




Desenvolvido por:

Logomarca da Lepidus Tecnologia