A Mathematical Model for Accessing Dengue Hemorrhagic Fever in Infants

Authors

  • F. A. Camargo São Paulo State University (UNESP), Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, District of Rubião Júnior 18618-689, Botucatu, SP, Brazil https://orcid.org/0000-0001-9428-3723
  • T. M. Oliveira Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de biociências de Botucatu. Rua Professor Doutor Antonio Celso Wagner Zanin Unesp Campus de Botucatu 18618689 - Botucatu, SP - Brasil Telefone: (14) 38800070
  • D. S. Rodrigues Universidade Estadual de Campinas, Faculdade de Tecnologia. Rua Paschoal Marmo, 1888 Jd. Nova Itália 13484332 - Limeira, SP - Brasil Telefone: (19) 21133474 https://orcid.org/0000-0002-0016-1715
  • P. F. A. Mancera São Paulo State University (UNESP), Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, District of Rubião Júnior 18618-689, Botucatu, SP, Brazil https://orcid.org/0000-0002-2080-8053
  • F. L. P. Santos São Paulo State University (UNESP), Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, District of Rubião Júnior 18618-689, Botucatu, SP, Brazil http://orcid.org/0000-0003-2774-7297

DOI:

https://doi.org/10.5540/tcam.2022.023.01.00101

Keywords:

system of differential equations, global analysis, virus, infant, numerical simulations

Abstract

A mathematical model was developed to describe the dynamics of the primary infection of dengue virus in infant who were born of a mother immune to some serotype of the dengue virus. The model is given by a system of nonlinear ordinary differential equations with the time-dependent variables for the number of DENV antibodies of the infant transferred from their immune, uninfected and infected monocytes and dengue virus. The mathematical analysis was carried out where the conditions for the existence of the disease-free equilibrium and the endemic equilibrium were established. The numerical simulations were performed considering different scenarios for R0 (Basic Reproductive Number), illustrating the global convergence of the numerical results for the equilibrium points. The results are in agreement with our derived global stability analysis. It can be concluded that the DHF in the infants could occur in the peaks observed for the infected monocytes and dengue virus.

Author Biography

F. A. Camargo, São Paulo State University (UNESP), Rua Prof. Dr. Antônio Celso Wagner Zanin, 250, District of Rubião Júnior 18618-689, Botucatu, SP, Brazil

Postgraduate Program in Biometrics, Institute of Biosciences, campus Botucatu.

References

W. H. Organization, "Dengue and severe dengue," 2017, http://apps.who.int/mediacentre/factsheets/fs117/en/index.html, Accessed: 2019-01-07.

M. G. Guzman, M. Alvarez, and S. B. Halstead, "Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection," Archives of virology, vol. 158, no. 7, pp. 1445-1459, 2013.

P. Palmeira, C. Quinello, A. L. Silveira-Lessa, C. A. Zago, and M. Carneiro-Sampaio, "Igg placental transfer in healthy and pathological pregnancies," Clinical and Developmental Immunology, vol. 2012, 2011.

P. M. Castanha, C. Braga, M. T. Cordeiro, A. I. Souza, C. D. Silva Jr, C. M. Martelli, W. G. van Panhuis, E. J. Nascimento, and E. T. Marques, "Placental transfer of dengue virus (denv)-specific antibodies and kinetics of denv infection-enhancing activity in brazilian infants," The Journal of Infectious Diseases, vol. 214, no. 2, pp. 265-272, 2016.

R. Nikin-Beers and S. M. Ciupe, "The role of antibody in enhancing dengue virus infection," Mathematical Biosciences, vol. 263, pp. 83-92, 2015.

S. L. Maroun, R. C. Marliere, R. C. Barcellus, C. N. Barbosa, J. R. Ramos, M. E. Moreira, et al., "Relato de caso: transmissão vertical de dengue," 2008.

A. Jain and U. C. Chaturvedi, "Dengue in infants: an overview," FEMS Immunology & Medical Microbiology, vol. 59, no. 2, pp. 119-130, 2010.

S. B. Halstead, N. T. Lan, T. T. Myint, T. N. Shwe, A. Nisalak, S. Kalyanarooj, S. Nimmannitya, S. Soegijanto, D. W. Vaughn, and T. P. Endy, "Dengue hemorrhagic fever in infants: research opportunities ignored," Emerging Infectious Diseases, vol. 8, no. 12, p. 1474, 2002.

Z. Kou, J. Y. Lim, M. Beltramello, M. Quinn, H. Chen, S.-n. Liu, L. Martnez-Sobrido, M. S. Diamond, J. J. Schlesinger, A. de Silva, et al., "Human antibodies

against dengue enhance dengue viral infectivity without suppressing type i interferon secretion in primary human monocytes," Virology, vol. 410, no. 1, pp. 240-247, 2011.

R. P. Duffin and R. H. Tullis, Mathematical models of the complete course of hiv infection and aids," Computational and Mathematical Methods in Medicine, vol. 4, no. 4, pp. 215-221, 2002.

J. A. Mosquera, J. P. Hernandez, N. Valero, L. M. Espina, and G. J. Añez, "Ultrastructural studies on dengue virus type 2 infection of cultured human monocytes," Virology Journal, vol. 2, no. 1, p. 26, 2005.

J. Zalevsky, A. K. Chamberlain, H. M. Horton, S. Karki, I. W. Leung, T. J. Sproule, G. A. Lazar, D. C. Roopenian, and J. R. Desjarlais, "Enhanced antibody half-life improves in vivo activity," Nature Biotechnology, vol. 28, no. 2, p. 157, 2010.

M. Martcheva, An introduction to mathematical epidemiology, vol. 61. Springer, 2015.

Z. Shuai and P. van den Driessche, "Global stability of infectious disease models using lyapunov functions," SIAM Journal on Applied Mathematics, vol. 73, no. 4, pp. 1513-1532, 2013.

C. Vargas-De-León, "On the global stability of sis, sir and sirs epidemic models with standard incidence," Chaos, Solitons & Fractals, vol. 44, no. 12, pp. 1106-1110, 2011.

S. Marino, I. B. Hogue, C. J. Ray, and D. E. Kirschner, "A methodology for performing global uncertainty and sensitivity analysis in systems biology," Journal of Theoretical Biology, vol. 254, no. 1, pp. 178-196, 2008.

Downloads

Published

2022-03-25

How to Cite

Camargo, F. A., Oliveira, T. M., Rodrigues, D. S., Mancera, P. F. A., & Santos, F. L. P. (2022). A Mathematical Model for Accessing Dengue Hemorrhagic Fever in Infants. Trends in Computational and Applied Mathematics, 23(1), 101–115. https://doi.org/10.5540/tcam.2022.023.01.00101

Issue

Section

Original Article