Optimal Decay Rates for Kirchhoff Plates with Intermediate Damping

J. C. V. Bravo, H. P. Oquendo, J. E. M. Rivera

Abstract


In this paper we study the asymptotic behavior of Kirchhoff plates with intermediate damping. The damping considered contemplates the frictional and the Kelvin-Voigt type dampings. We show that the semigroup those equations decays polynomially in time at least with the rate t^{-1/(2-2θ)}, where θ is a parameter in the interval [0,1[. Moreover, we prove that this decay rate is optimal.

Keywords


Plate equation, polynomial decay, optimal decay, frictional damping, Kelvin-Voigt type damping.

Full Text:

PDF


DOI: https://doi.org/10.5540/tema.2020.021.02.261

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.



TEMA - Trends in Applied and Computational Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)
ISSN: 1677-1966  (print version),  2179-8451  (online version)

Indexed in:

                        

 

Desenvolvido por:

Logomarca da Lepidus Tecnologia