### A Construction of Rotated Lattices via Totally Real Subfields of the Cyclotomic Field Q(z_p)

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

A.A. Andrade and R. Palazzo Jr. Linear codes over finite rings. TEMA - Trends in Applied and Computational Mathematics, 6(2) (2005), 207-217.

A.S. Ansari, R. Shah, Zia Ur-Rahman, A.A. Andrade. Sequences of primitive and non-primitive BCH codes. TEMA - Trends in Applied and Computational Mathematics, 19(2) (2018), 369-389.

A. A. Andrade and J. C. Interlando. Rotated Z^n-lattices via real subfields of Q(z_{2^r}). TEMA - Thends in Applied and Computational Mathematics, to appear.

B. Erez. The Galois structure of the trace form in extensions of odd prime degree. J. Algebra, 118 (1988), 438-446.

E. Bayer-Fluckiger, F. Oggier and E. Viterbo. New algebraic constructions of rotated Z^n-lattice constellations for the Rayleigh fading channel. IEEE Trans. Inform. Theory, 50(4) (2004), 702-714.

J. Boutros, E. Viterbo, C. Rastello, and J.C. Belfiore. Good lattice constellations for both Rayleigh fading and Gaussian channels. IEEE Trans. Inf. Theory, 42(2) (1996), 502-518.

J. P. O. Santos. Introduction to numbers theory, Projeto Euclides, Impa, Rio de Janeiro (2006).

P. Elia, B. A. Sethuraman and P. Vijay Kumar. Perfect space-time codes for any number of antennas. IEEE Trans. Inform. Theory, 53(11) (2007), 3853-3868.

P. Ribenboin. Classical theory of algebraic numbers, Springer Verlag, New York (2001).

DOI: https://doi.org/10.5540/tema.2019.020.03.561

#### Article Metrics

_{Metrics powered by PLOS ALM}

### Refbacks

- There are currently no refbacks.

**Trends in Computational and Applied Mathematics**

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

Indexed in: