Controle Automático de Volume em Tempo Real Utilizando Inferência Fuzzy em um Sistema Embarcado

A. T. Escottá, W. Beccaro

Abstract


Controle Automático de Volume (CAV) é uma tecnologia que ajusta automaticamente a intensidade sonora de um sinal na presença de ruído. Diferentes técnicas para realizar o CAV foram relatadas na literatura, contudo poucos estudos utilizam algoritmos de inteligência computacional. A lógica Fuzzy é uma técnica que suporta modos de raciocínio com o princípio da incerteza, sendo capaz de aproximar o pensamento humano e aspectos psicoacústicos em aplicações de áudio. Este artigo apresenta um CAV utilizando sistema de inferência Fuzzy, que permite o controle de volume em tempo real de um sinal de áudio, mantendo a capacidade de discriminação de um som mesmo em um ambiente ruidoso. Os resultados da caracterização do algoritmo Fuzzy embarcado em um microprocessador ARM Cortex M4, demonstram o ajuste automático e rápido do volume de áudio de saída através de regras Fuzzy.

Keywords


Lógica Fuzzy; Sistemas Multimídias; Sistemas Embarcados; Controle Automático de Volume.

References


B. Grith and J. Tom, "Audio automatic volume control circuit, in 1956 IEEE International Solid-State Circuits Conference. Digest of Technical Papers,

pp. 3-3, 1956.

F. Felber, "An automatic volume control for preserving intelligibility," in 34th IEEE Sarnoff Symposium, pp. 1-5, 2011.

K.-P. Han, K.-W. Song, Z.-H. Kim, G.-C. Lee, and Y.-H. Ha, "Automatic volume control system for compensation of volume difference between tv channels," IEEE Transactions on Consumer Electronics, vol. 43, pp. 1197-1205, Nov 1997.

J. Yang, P. Hilmes, B. Adair, and D. W. Krueger, "Deep learning-based automatic volume control and limiter system," in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2177-2181, March 2017.

F. S. Kinsler et al., "Automatic volume control to compensate for speech interference noise," U. S. Patent 7,760,893 (20 July 2010), U. S. Patent 7,908,134 (15 March 2011).

M. Takahashi, M. Ogata, M. Imai, K. Nakamura, and K. Nakadai, "A case study of an automatic volume control interface for a telepresence system," in 2015 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 517-522, Aug 2015.

A. Hayamizu, M. Imai, K. Nakamura, and K. Nakadai, "Volume adaptation and visualization by modeling the volume level in noisy environments for telepresence system," in Proceedings of the Second International Conference on Human-agent Interaction, HAI '14, (New York, NY, USA), pp. 67-74, ACM, 2014.

O. Al-Jarrah and A. Shaout, "Automotive volume control using fuzzy logic," J. Intell. Fuzzy Syst., vol. 18, pp. 329-343, Dec. 2007.

D. A. Srail, "Automatic volume control based on speech recognition," U. S. Patent 9508344B2 (15 October 2014).

E. Li, "Automatic volume control based on context and location," U. S. Patent 20150011195A1 (03 July 2013).

C. K. Barker et al., "Automatic volume control for land mobile radio," U. S. Patent 20180205354A1 (31 July 2014).

S. G. Kambalimath, P. C. Pandey, P. N. Kulkarni, S. S. Mahant-Shetti, and S. G. Hiremath, "FPGA-based design of a hearing aid with frequency response selection through audio input," in 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID), pp. 579-580, Jan 2016.

Y. Hwangbo, C. J. Park, and S. H. Choi, "Automatic volume control based on background noise characteristics," International Journal on Recent and Innovation Trends in Computing and Communication (IJRITCC), vol. 4, no. 12, pp. 40-41, 2016.

E. Martinson and D. Brock, "Auditory perspective taking," IEEE Transactions on Cybernetics, vol. 43, pp. 957-969, June 2013.

L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, no. 3, pp. 338-353, 1965.

L. A. Zadeh, "Fuzzy logic - a personal perspective," Fuzzy Sets and Systems, vol. 281, pp. 4-20, 2015.

C. Gómez, M. Vellasco, and R. Tanscheit, "Controle de um sistema de navegação de um robô ambiental híbrido por meio de um sistema de inferência fuzzy hierárquico," Trends in Applied and Computational Mathematics, vol. 19, no. 2, pp. 235, 2018.

A. M. Bertone, R. Jafelice, and M. Câmara, "Fuzzy linear programming: Optimization of an electric circuit model," Trends in Applied and Computational Mathematics, vol. 18, no. 3, p. 419, 2018.

A. Bressane, F. Fengler, S. Roveda, J. Roveda, and A. Martins, "Arboreal identication supported by fuzzy modeling for trunk texture recognition," Trends in Applied and Computational Mathematics, vol. 19, no. 1, p. 111, 2018.

A. M. Bertone, J. Martins, and K. Yamanaka, "Black-box fuzzy identification of a nonlinear hydrogen fuel cell model," Trends in Applied and Computational Mathematics, vol. 18, no. 3, p. 405, 2018.

M. Sugeno and G. Kang, "Structure identification of fuzzy model," Fuzzy Sets and Systems, vol. 28, no. 1, pp. 15 - 33, 1988.

M. Iphar and R. Goktan, "An application of fuzzy sets to the diggability index rating method for surface mine equipment selection," International Journal of Rock Mechanics and Mining Sciences, vol. 43, no. 2, pp. 253 - 266, 2006.

M. G. Simões and I. S. Shaw, Controle e Modelagem Fuzzy. São Paulo: Edgard Blucher Ltda, 1999.

E. H. Mamdani and S. Assilian, "An experiment in linguistic synthesis with a fuzzy logic controller," Int. J. Hum.-Comput. Stud., vol. 51, pp. 135-147, Aug. 1999.

E. H. Mamdani, "Application of fuzzy logic to approximate reasoning using linguistic synthesis," IEEE Transactions on Computers, vol. C-26, pp. 1182-

, Dec 1977.

J. Yiu, The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors. Elsevier, 2014.

S. H. Teay, "Embedded fuzzy logic v0.30, https://github.com/Beta-10/embedded-fuzzy-logic, Accessed: 2019-01-20," 2019.

T. Zhang and J. Kuo, "Audio content analysis for online audiovisual data segmentation and classiffication," IEEE Transactions on Speech and Audio Processing, vol. 9, pp. 441-457, May 2001.

M. G. S. Pires. et al., "Medida do nível de pressão sonora em um centro urbano,"J. Bras. Fonoaudiol., vol. 3, no. 13, pp. 263-266, 2012.




DOI: https://doi.org/10.5540/tcam.2021.022.01.00041

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.



Trends in Computational and Applied Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)

 

Indexed in:

                       

         

 

Desenvolvido por:

Logomarca da Lepidus Tecnologia