Pré-Despacho de um Sistema Hidrotérmico com Manobras e Restrições de Rampa

Silvia M. S. Carvalho, Mayk V. Coelho

Abstract


Os métodos de pontos interiores primais-duais serão desenvolvidos para o problema de minimização das perdas na geração e transmissão do pré- despacho DC de um sistema de potência hidroelétrico e hidrotérmico onde ocorrem adicionalmente manobras programadas e restrições de rampa. Com a variação da demanda, se faz necessário realizar algumas manobras programadas para manutenção de geradores e para adaptar a rede de transmissão a esta carga possibilitando atendê-la com eficiência e mantendo o sistema estável. As usinas termoelétricas, por sua vez, apresentam restrições de rampa, pois necessitam de um determinado tempo tanto para aumentar quanto para reduzir sua produção de energia. A consideração de manobras e restrições adicionais aproxima o modelo do problema de pré-despacho do sistema brasileiro de acordo com o Operador Nacional do Sistema.

Keywords


Métodos de Pontos Interiores; Restrições de Rampa; Manobras Programadas.

References


I. Adler, M. G. C. Resende, G. Veiga, and N. Karmarkar, “An implementation of Karmarkar’s algorithm for linear programming,” Mathematical Programming, vol. 44, pp. 297–335, 1989.

S. Bocanegra, F. F. Campos, and A. R. L. Oliveira, “Using a hybrid preconditioner for solving large-scale linear systems arising from interior point methods,” Aceito para publicação no número especial “Linear Algebra Issues arising in

Interior Point Methods” da revista Computational Optimization and Applications, 2006. http://www.maths.ed.ac.uk/ gondzio/coapLAIPM/Welcome.html.

J. Czyzyk, S. Mehrotra, M. Wagner, and S. J. Wright, “PCx an interior point code for linear programming,” Optimization Methods & Software, vol. 11-2, no. 1-4, pp. 397–430, 1999.

J. Gondzio, “Multiple centrality corrections in a primal-dual method for linear programming,” Computational Optimization and Applications, vol. 6, pp. 137–156, 1996.

I. J. Lustig, R. E. Marsten, and D. F. Shanno, “On implementing Mehrotra’s predictor-corrector interior point method for linear programming,” SIAM Journal on Optimization, vol. 2, pp. 435–449, 1992.

A. R. L. Oliveira and D. C. Sorensen, “A new class of preconditioners for large-scale linear systems from interior point methods for linear programming,” Linear Algebra and Its Applications, vol. 394, pp. 1–24, 2005.

M. Resende and G. Veiga, “An efficient implementation of a network interior point method,” Network Flows and Matching: First DIMACS Implementation Challenge, D.S. Johnson and C.C. McGeoch, eds., DIMACS Series on Discrete Mathematics and Theoretical Computer Science, vol. 12, pp. 299–348, 1993

J. L. Kennington and R. V. Helgason, Algorithms for Network Programming.New York: Wiley, 1980.

A. R. L. Oliveira, S. Soares, and L. Nepomuceno, “Optimal active power dispatch combining network flow and interior point approaches,” IEEE Transactions on Power Systems, vol. 18, pp. 1235–1240, November 2003.

A. R. L. Oliveira and S. Soares, “Métodos de pontos interiores para problema de fluxo de potência ótimo DC,” SBA: Controle & Automação, vol. 14, no. 3, pp. 278–285, 2003.

A. R. L. Oliveira, S. Soares, and L. Nepomuceno, “Short term hydroelectric scheduling combining network flow and interior point approaches,” Electrical Power & Energy Systems, vol. 27, no. 2, pp. 91–99, 2005.

J. Castro, “A specialized interior-point algorithm for multcommodity network flows,” SIAM J. Optimization, vol. 10, no. 3, pp. 852–877, 2000.

A. R. L. Oliveira and C. Lyra, “Interior point methods for the polynomial L1 fitting problem,” International Transactions in Operational Research, vol. 11, no. 3, pp. 309–322, 2004.

A. R. L. Oliveira, M. A. Nascimento, and C. Lyra, “Efficient implementation and benchmark of interior point methods for the polynomial L1 fitting problem,” Computational Statistics & Data Analysis, vol. 35, no. 2, pp. 119–135, 2000.

A. Garzillo, M. Innorta, and R. Ricci, “The flexibility of interior point based power flow algorithms facing critical network situations,” Electrical Power & Energy Systems, vol. 21, pp. 579–584, 1999.

J. A. Momoh, M. E. El-Hawary, and R. Adapa, “A review of selected optimal power flow literature to 1993, part II Newton, linear programming and interior point methods,” IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 105–111, 1999.

V. H. Quintana, G. L. Torres, and J. M. Palomo, “Interior point methods and their applications to power systems: A classification of publications and software codes,” IEEE Transactions on Power Systems, vol. 15, no. 1, pp. 170–

, 2000.

A. R. L. Oliveira and R.W. Probst, “Aplicação dos métodos de pontos interiores primais-duais ao problema de pré-despacho de um sistema hidrotérmico,” Anais do XXXVII Simpósio Brasileiro de Pesquisa Operacional, pp. 1900–1908, 2005.

A. R. L. Oliveira, S. M. S. Carvalho, “Interior point methods applied to the predispatch hydroelectric system with simulated modification in the network topology.,” Magazine IEEE Latin America, pp. 143–149, 2015.

R. J. Vanderbei, Linear Programming – Foundations and Extensions. Boston, USA: Kluwer Academics Publishers, 1996.

S. J. Wright, Primal–Dual Interior–Point Methods. Philadelphia, PA, USA: SIAM Publications, SIAM, 1996.

M. F. Carvalho, S. Soares, and T. Ohishi, “Optimal active power dispatch by network flow approach,” IEEE Transactions on Power Systems, vol. 3, no. 3, pp. 1640–1647, 1988.




DOI: https://doi.org/10.5540/tema.2019.020.03.541

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.



TEMA - Trends in Applied and Computational Mathematics

A publication of the Brazilian Society of Applied and Computational Mathematics (SBMAC)
ISSN: 1677-1966  (print version),  2179-8451  (online version)

Indexed in:

                        

 

Desenvolvido por:

Logomarca da Lepidus Tecnologia