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Abstract. Biomarkers are clinical measures related to disease progress, such quan-
tities combined allow better diagnosis prediction. In order to maximize the pre-
diction rate, feature selection methods seek for suitable subspaces to represent the
patterns. Although high dimensional feature spaces demand inaccessible data vol-
ume leading then to biased models and time consuming training. In this work
we present a comparison of prediction models for Alzheimer’s disease obtained by
solving a classification problem. In order to this we use the k-nearest neighbors
(kNN) rule along with the SMOTE (Synthetic Minority Oversampling TEchnique)
preprocessing in a wrapped based scheme to feature search. The effectiveness of
these non-parametric techniques are validated in this work for unbalanced datasets
that are a challenge in medical applications and machine learning. In the valida-
tion process we use confusion matrix combined with 10-fold cross validation. Our
results agrees with neurologists hypothesis about biomarkers relevance, identifying
potentially discriminant subsets.

Keywords. k-nearest neighbor, SMOTE, feature selection, Alzheimer’s biomark-
ers, Alzheimer’s disease classification

1. Introduction

Alzheimer’s disease is a frequent dementia that affects mainly elderly, and is charac-
terized as the results between neuropathologies which imply in complex conformities
[8]. Its spectrum extends from cognitively normal to severe compromised cognition
faculties, causing memory and coordination loss and ultimately leading to death
[12]. Currently, despite the negative economic impact there is no treatment to re-
vert the neuronal loss, making early stages identification essential to palliative cares
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[13]. In the last years, biomarkers have been developed to allow tracking of disease
progression and improvement of prediction [8]. Motived by that we propose to find
among several subsets of features (biomarkers) those that maximizes the prediction
rate, more specifically we want to assign as best as possible test samples to one
of following classes, control normal (CN), middle cognitive impairment (MCI) and
Alzheimer’s disease (AD).

Lately several classifiers and other experiments in Alzheimer’s prediction have ob-
tained successful results. Khedher et al. apply support vector machines and prin-
cipal component analysis in tissue segmented MRI images to classification of the
same three class problem [10]. The main difficulty in their work is that images have
high dimensionality compared with the available number of training samples, this
can potentially degrade the prediction. Using graph theory to analyze the connec-
tivity of different brain regions obtained by fMRI, Khazaee et al. [9] differentiate
between AD and CN classes perfectly. Although, separation between extreme cases
are straightforward, obstacles arise when overlapping classes, such as MCI, are con-
sidered. There is the Alzheimer’s Disease Big Data DREAM Challenge, divided
in sub-challenges and released in June of 2014, which includes, more classes such
as Early MCI and Late MCI, and a great variety of features, turning the problem
really hard due to the class overlapping and the feature space dimensionality.

In this work, we will use k-nearest neighbors (kNN) classifier that is a nonparametric
supervised algorithm. It means there is no assumptions about the distributions of
the different classes. kNN is a simple metric based algorithm but competitive when
the constrains for efficacy are followed. Here we deal with the unbalanced data using
SMOTE (synthetic minority over-sampling technique) to avoid information loss
caused by undersampling [4], this technique enforce the decision region of the minor
represented data and improve classification. We compare the global prediction rate
with greedy fashioned search algorithms for feature selection. The rest of paper
is organized as follow: Section 2 we present the data and the methods kNN and
SMOTE following by the feature selection and validation procedures, in Section 3
the experiment and results and then conclusions.

2. Methods

2.1. Dataset

In this study we use a sample from ADNI (Alzheimer’s Disease Neuroimaging Initia-
tive) database. Our features space consist in five neuropsychological tests and three
proteomic biomarkers [14]: LM (Logical Memory), ADAS-COG (Alzheimer’s Dis-
ease Assessment Scale-cognitive), MMSE (Mini Mental State Examination), REY
(Rey Auditory Verbal Learning Test), TAU (Total 7 protein), ABETA142 (Amy-
loid Beta 1-42) and PTAU181P (Hyperphosphorylated 7 protein). In the table 1
we describe the dataset demographics.
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Quite often, clinical datasets come with unbalanced classes due to different prob-
ability occurrences in pathologies stages. This is a critical issue that generates
unfair separation in decision surface, causing overfitting and worse prediction rates
in validation stage. We will discuss further the two main strategies to adjust the
proportion between classes without assume any distribution model, namely over-
sampling and undersampling techniques.

Table 1: Dataset demographics

’ Features \ CN \ MCI \ AD \ label ‘
Male 78 220 58 -
Female 78 181 44 -
Education Years 16.55 £ 2.47 16.18 £+ 2.67 15.82 £ 2.62 -
Age 77.48 4+ 6.42 75.27 + 7.52 78.29 4+ 8.29 -
ADAs-cog 5.87 + 3.14 9.28 + 4.48 20.37 &+ 7.45 1
LM 14.52 4+ 2.98 9.55 4 4.05 4.61 4+ 2.93 2
REY 12.78 £ 2.27 11.26 + 3.18 6.50 £+ 3.95 3
MoCA 25.87 + 2.47 23.68 + 3.30 17.92 + 4.45 4
MMSE 28.98 + 1.30 28.05 + 1.73 23.14 + 2.14 5
ABETA142 194.96 + 50.74 | 176.20 + 51.78 | 135.72 £ 38.95 6
TAU 67.28 + 33.20 | 86.04 £ 52.64 | 133.83 £ 65.25 7
PTAU181P 34.14 4+ 18.78 | 40.68 + 23.49 | 55.44 + 28.94 8

2.2. k-Nearest neighbor

Classification problem can be defined using discriminant functions [11]. For now
on, consider a classifier C(z) that assign a pattern z € R™ from a vector space to a
class into the class space w € Q :={1,..., ¢},

C(z):R" = Q

The maximum a posteriori classifier (MAP) uses a sequence of discriminant func-
tions to assign to the most probably class. Let {f,}5,_; be a sequence of discrimi-
nant functions. A classifier C is well defined when for all values in pattern space its
possible to assign a class, the MAP classifier is given by

W = argmax fuw(x) (2.1)

The sequence of discriminant functions divide the pattern space in decision regions
{R1,...,R.}. An example of classification problem is depicted in the figure 1 along
with two class distributions of the opposite classes.
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Figure 1: Left and middle - plots of class densities, respectively, the CN and AD,
on the right - plot of decision boundaries generated by the 3NN method.

Binary classifiers use the one-against-all strategy in order to be adapted to the
multiclass problems. The nearest neighbors strategy can deal with that naturally.
Here we define the kNN rule, that uses a neighborhood of k training instances
around a test instance for classification. Let T = {(x;,w;)}, be a training set,
with tuples x; € R™ and w; € Q as training pattern with its known classes and let
T, be a test instance that we want assign to a class in 2. The MAP classifier of
equation 2.1 for the kNN is given by

W, = arg max Z d(wj,w) (2.2)
T;EN (x4 ,k)

that is
W, = arg max Z o(wj,wr), ..., Z S(wj, we) (2.3)
z;EN (x4 ,k) z;EN (x4 ,k)

using the discriminant functions monotonicity to equation 2.3 we have

W, = argmax Z W, ey Z 9wy, we) (2.4)

k
x; EN (z4,k) 2 EN (z4,k)
with this each term in 2.4 is the probability of class assignment
0(w;, w; .
p(wi)(z*,k) = Z %7 from i=1,...,c (2.5)
T EN(zx k)

given a k-neighborhood and by equation 2.5 we have that the most probable class
for the training instance xz, is given by

Wy = arg MAx p(w)(z, ) (2.6)

where N(z., k) is a neighborhood with & training instances around z, and §(.,.) is
a Kronecker delta. The parameter k that adjusts the neighborhood N (z., k) must
be searched empirically, Bhattacharyya [2] proposes a bound to the optimal &, that
is, k < y/m, and searching only odd values its possible to avoid ties in (2.1). The
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class posterior distribution, p(wj|z.), that is the probability of class assignment w;
given a pattern x,, is often used as discriminant function in equation 2.1 within
a bayesian framework. The approximation of class posterior distribution obtained
locally by equation 2.6, was used to plot the pattern space probability assignment
along with the decision boundaries for the knn plots. In the figure 2 we depicted the
role of k in the decision boundaries as well the probabilities of class assignments.
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Figure 2: Left to right, the influence of the k-neighborhood in the decision bound-
aries, for k = 1, k = 5 and k = 9. These classification problems have 50 samples
to each class. Also, note that there is only two probabilities in the 1NN pattern
space. This happens because there is no misclassification for the training instances
causing overfitting.

As any other nonparametric method for classification, the functional in 77 is data
depended. In order to aid the effect of data removal, we apply leave-one-out cross
validation (LOOCYV) to kNN on each search for the optimal k. In the figure 3
we show the shrink effect of unbalanced classes in decision boundaries and data
removal.
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Figure 3: On each plot it was applied 5NN with unbalanced datasets. From the CN
class, it was removed respectively 75 %, 50 % and 25 % of the data increasing the

decision region of the majority class.

The kNN method does not rely on any assumption about the data structure and
distribution. Thus, being employed in many different applications. Although its
local nature can suffer by the curse of dimensionality. This is happens when the
training patterns become sparse in high dimensions requiring more data to fill out
the whole space. There are other formulations to the neighborhood that can over-
come the kNN problems in high dimensional spaces, such as the weighted kNN [5]



that account with a weighted scheme W(.,.) as an argument of a kernel function
K(.) in order to adjust relative distances between the patterns and avoiding the
bias caused by the relative distances.

. = arg max ]; k)é(wj,wwvv(x*,xm (2.7)

where

d(zp,x)—d(zj,xe)
W(onrny) - {dw’f,w(zk,d*) i drpn.) # dier, )

1 otherwise

Instead using a wkNN defined by the equation 2.7 we will use the kNN combined
with a preprocessing algorithm called SMOTE to deal with the unbalanced class.
SMOTE is a sampling preprocessing step that make the minority class more repre-
sentative and improve the decision boundaries.

2.3. SMOTE

Sampling techniques are required when there are unbalanced classes in a classifi-
cation problem. Since the class of interest has few training patterns it turns out
to be misrepresented and, thus, has the decision region shrunken.In order to avoid
this problem that affects the final outcome, one can remove instances from the
major class randomly until achieve the same proportion, or oversample the minor
class, literally creating synthetic patterns based on the existing ones. The SMOTE
algorithm is a oversampling technique that uses nearest neighbor strategy to add
synthetics patterns. The algorithm works as follows [3]: given the minority train-
ing patterns, for each pattern, select randomly other pattern in a k-neighborhood
and add a synthetic pattern between then, repeat this procedure until achieve the
desired proportion.

SMOTE encumbers the parameter space that must be searched to obtain the model
with highest prediction rate. To avoid this setting we will the k-neighborhood at
k =7. SMOTE when applied in spurious points can generate more of them. There
are some moderns versions of this algorithm that is called SMOTE borderline [7],
that chooses a secure subsample of the minority class to oversample, avoiding the
spurious points propagation. In the figure 4 and 5 we depict respectively, the effect
of the parameter k and the proportion size and compare it using Bhattacharyya
distance [1] to measure how two distributions differ. Given two normal distributions,
@1 = N(p1,%1) and g2 = N (2, X2), the Bhattacharyya distance between ¢; and g9
is given by the following expression

1 S 1 det (%)
dp(q1,q2) = g(ﬂl = p2)7 57 (i = p2) + 2 ( det(21)det(22)>
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where ¥ = (21 + 22)/2
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Figure 4: On the left - the original data; on the middle - original data composed
with SMOTE for & = 5 oversampled 100%; on the right - original data composed
with SMOTE for k& = 5 oversampled 200%. The Bhattacharyya distances to the
original distribution are 0.0013571 and 0.0013571.
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Figure 5: All plots here are compositions of the original data and SMOTE oversam-
pled 100% for differing values of k, namely, k = 7, k = 9 and k = 11, theirs Bhat-
tacharyya’s distances from original sample are respectively, 0.0025587, 0.0106067
and 0.0022428.

2.4. Feature selection

Is not uncommon that real problems have hundreds of features, such as in genetics,
natural language processing, Parkinson disease, Alzheimer’s disease among others,
to have hundreds of features to be considered in order to well understanding the
problem. Feature selection methods try to answer how many features are needed
to make a secure classification. For this purpose, these techniques seek the subset
with the most relevant features reducing the dimensionality and overcoming over-
fitting. There are many notions of relevance, such as informativeness, correlation,
statistical significance and others. Here we use usefulness for the task, that is those
features that maximizes the prediction rate [6]. here are three main strategies for
feature selection. Filtering methods that, regardless of the classifier, are suitable for
large set of features; wrapper methods are based on search strategies and use the
classifier performance and the earlier embedded methods that balance two opposite
strategies [6]. We will compare three search strategies for wrappers with global
results, backward elimination, forward selection and hill-climbing selection [6]. In
figure 6 we depict a example of search graph stages.



000 oo

A B R A B R

oo/ e/ [Cee \eee®

A H R s )V A R & Ty

ooe/ e0e

h £ A IR SR ]

Figure 6: With only 3 features that allows 4 combinations in this simplified example
each node represent a subset of features. In the first node at left there is no features
and in the last node all features are chosen.

2.5. Validation

Overfitting happens when a model gives reasonable prediction in the training phase
but gives poor performance on the testing stage. Validation after the training phase
is appropriate to observe if the model can avoid overfitting, that is, how general and
applicable the model is. The confusion matrix P provides a way to select the best
results and interpreting the classification accuracy. The matrix P is defined bytge
probability of classify z, in the class w; given that was generated by class w; ,
that is, P(z, € w;|z, € w;). With respect to all test samples we denote P only as
P(w;|w;). Furthermore P is a stochastic matrix,

iy P(wilw;) =1 with P(wiw;) >0 for i,j=1,...c

j=1

The average of the trace of P is the probability of correct classifications for all
classes. We will define this metric in order to have a scalar magnitude to compare

to.
(&

P(w;i|w;)
val(P) := R - R val(P) = —_—
(P) (P)=3 =
Here we’ll use the 10-fold cross validation in the confusion matrices to obtain the
deviations of the models. In this process we take apart 20% of the training sample to
use as test sample, the remaining data is preprocessed by SMOTE then is generated
a new model, this process is repeated 10 times then is averaged. The data was
converted by decimal normalization to improve the prediction as suggested in [4].

3. Results

Figure 7 shows confusion matrices for the best and worse models with the same
number of features. When the number of features is increased the difference between
the worse and the best is less evident. This effect can be better noticed with more
features.
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Figure 7: Confusion matrices, in the first line models with the best combinations
for 2,3,4,5 and 6 features, in the second line the worst combinations for the same
numbers of features.

In table 2, it is shown the prediction rates obtained in the training phase and val-
idation for the best models for each number of features. On this table, there is
few significant improvement (0.1958 %) from the best model with 2 features from
the best with 6, meaning that use of the 2 features model can save data volume
to make a decision. All the wrappers feature selection strategies achieve the high-
est prediction rate combination with the following scores: backward elimination hits
84.7215 + 0.0897 %, forward selection hits 84.0648 + 0.0963 % and hill-climbing hits
83.9983 + 0.1191 %. Altogether, was optimized 247 models to compose the rank-
ing, with the training phase varying from 52.3857 + 0.3587 % to 84.2394+ 0.0700.
As expected, the validation process increases the standard deviation but with more
computational resources and data the standard deviation can be reduced. Fur-
thermore the prediction rate can be increased. In the classification problem, some
features show no improvement in some combinations, showing that some features
are almost completely redundant. It was noted that when the models have few
features the size of k-neighborhood tends to be nearly of the limit defined to the
search.
Table 2: Dataset demographics

Feature sct labels | Rank | Training accuracy (%) | k-neighbors [ wal(P) (%)

2,1,5,4,7,6 1 84.2394L 0.0700 3 82.2798 + 1.5906
2.1,5,4,3,7,6 2 83.9650+ 0.1325 3 82.7690 + 2.2888
2.1,5,4,3,7,6.8 5 83.9069=+ 0.0893 3 82.2664 + 1.5332
2.1,5,7,6 7 83.6741% 0.1122 3 83.4542 + 2.0988
2.1,7.6 25 82.3275+ 0.1251 5 81.6872 + 1.7498
21,6 49 80.6317+ 0.1239 13 79.9043 + 1.0984

2.1 87 78.4280+ 0.1579 25 78.9773 + 2.1823

3.1. Conclusion

When applying pattern recognition methods, we refer all possibilities of missing
features that would contribute for the final outcome. In this sense the relative eval-
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uations of relevance are restrict to these features. An interesting finding is that
proportionally the neuropsychological tests have higher position in the ranks than
proteomical biomarkers. This contrasts with the fact that biomarkers are more ob-
jectively measurable than the neuropsychological tests and, in theory, should give
better results.

As far as methods go and despite of restrictions with dimensionality and parameters
to optimize, once we have the symmetric distance matrix, all computations are done
quickly. Thus, it is worth studying the limits in modifications of local methods, for
instance, changes of the metric space or weighted schemes for reduction of relative
distances. The dimensionality reduction achieved for two features in this work is
composed by neuropsychological features, that is more cheap and non contrasting
with the proteomical tests.

Further analysis has to be done as far as methods for feature selection goes and
in order to better separate the different classes and, therefore, to better classify
patients en AD, increasing their way of life.

Resumo. Biomarcadores sao medidas clinicas relacionadas com a evolugao de
doengas, tais quantidades combinadas permitir uma melhor predi¢ao do diagnéstico.
A fim de maximizar a taxa de predi¢do, os métodos de selegdo de caracteristicas
buscam por subespagos adequados para representar os padroes. Entretanto espagos
com alta dimensionalidade exigem maior volume de dados, por vezes inacessiveis,
levando entdo a modelos tendenciosos e com treinamento demorado. Neste tra-
balho apresentamos uma comparagao entre modelos de predigao para a doenca
de Alzheimer obtida resolvendo um problema de classificacdo. Para tal, usamos
a regra k-vizinhos mais proximos (kNN) pré-processado com SMOTE (Synthetic
técnica Minority Oversampling) em um esquema de selegdo via envélucro para re-
alizar a busca pelas caracteristicas. A eficicia dessas técnicas ndo-paramétricas
sao validados neste trabalho para conjuntos de dados desequilibradas, os quais sao
um desafio em aplicagdes médicas. No processo de validagao é utilizado matrizes
de confusdo combinado com validacdo cruzada 10 vezes. Nossos resultados estdo
de acordo com as hipdteses dos neurologistas sobre a relevancia de alguns grupos
de biomarcadores e permite identificar subconjuntos caracteristicas potencialmente
discriminantes.

Palavras-chave. k-vizinhos mais proximos, SMOTE, selegdo de caracteristicas,
biomarcadores de Alzheimer, problema de classificagao
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