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The in�uence of velocity �eld approximations in

tracer injection processes

Abstract Although the concentration is the most important variable in tracer in-
jection processes, an e�cient and accurate velocity �eld approximation is crucial
to obtain a good physical behaviour for the problem. In this paper we analyse a
Stabilized Dual Hybrid Mixed (SDHM) method to solve the Darcy's system in the
velocity and pressure variables that involves the conservation of mass and Darcy's
law. This approach is locally conservative, free of compromise between the �nite
element approximation spaces and capable of dealing with heterogeneous media
with discontinuous properties. The tracer concentration is solved via a combina-
tion of the Streamline Upwind Petrov-Galerkin (SUPG) method in space with an
implicit �nite di�erence scheme in time. We also employ a semi-analytical approach
(Abbaszadeh-Dehghani analytical solution) to integrate the transport equation. A
numerical comparative study using the SDHM formulation, the Galerkin method
and a post-processing technique to calculate the velocity �eld in combination with
those concentration approximation methodologies are presented. In all compari-
sons, the SDHM formulation appears as the most e�cient, accurate and almost
free of spurious oscillations.

Keywords. Miscible displacements, Hybridized method, Oil reservoir simulations

1. Introduction

Information extracted from tracer breakthrough pro�les at production wells plays
an important role in reservoir engineering both in the characterization of reservoir
heterogeneities as in the project of recovery techniques. Those pro�les can be de-
tected either experimentally or via the solution of a mathematical model, which
describes the transport of substances through a porous medium. Although the con-
centration is the variable of most interest, approximation of the velocity �eld is
crucial, since it is responsible for the �ow displacement.

Standard Mixed Finite Element (MFE) methods have been extensively employed
during the last decades to solve Darcy's system [1, 2, 3, 4, 5]. The main idea of
these methods is simultaneously approximate pressure and velocity by using di�e-
rent spaces for each variable. This leads to a compatibility condition between the
approximation spaces (the LBB condition [6]), and thus restricts the choice of stable
�nite element spaces. However, these choices are usually unstable with standard
dual mixed formulation, as was illustrated in [7]. A very common example of stable
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mixed method is given by the Raviart-Thomas spaces [1]. To overcome the compa-
tibility conditions, some stabilized mixed �nite element methods were proposed in
[8, 9, 10, 11, 12, 7, 13, 14]. In general, these stabilized formulations use continuous
Lagrangian �nite element spaces and can be successfully employed in simulating
Darcy �ows in homogeneous porous media. However, continuous interpolations are
not appropriate to heterogeneous porous media with discontinuous properties. This
is due to the fact that on the interfaces of the discontinuities the normal compo-
nent of Darcy velocity must be continuous (mass conservation) but the tangential
component is discontinuous. Formulations based on continuous Lagrangian interpo-
lation for velocity fail to represent the tangential discontinuity, producing inaccurate
approximations and spurious oscillations. Therefore, based on hybridization techni-
ques the Stabilized Dual Hybrid Mixed (SDHM) method that combines advantages
of the Discontinuous Galerkin (DG) methods [15] with reduced computational was
developed for calculating accurate velocity �elds to miscible displacements in ho-
mogeneous and heterogeneous porous media [16, 17, 18]. The SDHM formulation
consists of a set of local problems de�ned at the element level coupled to a global
system for the Lagrange multipliers. Stabilization terms are added to generate a
stable and adjoint consistent formulation allowing greater �exibility in the choice
of the approximation spaces. The Lagrange multiplier is identi�ed as the pressure
trace on the element interface, which is a natural choice.

In [17] the authors have shown that for regular solutions the SDHM method
leads to optimum rates of convergence for the velocity and pressure �elds, even
when same order interpolations are employed. In addition, the mixture transport
in homogeneous and heterogeneous media were recently analysed [18] by studying
the in�uence of the mobility ratio and the permeability �eld variation. In these
cases, the SDHM method was applied in the approximation of the velocity �eld
coupled to the SUPG method in the calculation of the concentration �eld. The
good performance of this methodology was veri�ed through the presented numerical
simulations.

In this paper, following the works mentioned in the above paragraph, we study
the e�ciency and robustness of the SDHM comparing with the usual Galerkin
method and a post-processing technique [19, 20]. To do this, we analyse the in-
�uence of the velocity �eld approximations on the behaviour of the prediction of
tracer concentration at the producer well. The concentration approximation is ob-
tained via the SUPG method combined with an implicit �nite di�erence scheme, as
in [17, 18]. In order to validate the numerical results, a semi-analytical methodo-
logy, which consists of combining the analytical solution for the concentration given
by Abbaszadeh-Dehghani [21] with an approximation for the velocity �eld is also
provided.

The outline of this work is as follows. Section 2 considers the mathematical
model of the problem. The stabilized dual hybrid mixed (SDHM) method for the
Darcy's system is presented in Section 3. Tracer concentration approximations
based on the SUPG approach and on the semi-analytical methodology are discussed
in Section 4, as well as its combination with the usual Galerkin method and a post-
processing technique. Numerical experiments are reported in Section 5. Finally,
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some conclusions are given in Section 6.

2. The model problem

The equations governing tracer �ows in miscible displacements [22] can be described
by the �rst order system of partial di�erential equations in the Darcy velocity
u = u(x, t) and the pressure p = p(x) coming from the mass conservation of the
mixture and the Darcy's law:

div u = f in Ω × (0, T ) , (2.1)

u = −K∇p in Ω × (0, T ) , (2.2)

combined with a convection dominated di�usion-convection equation, which expres-
ses the conservation of mass of the injected �uid (the tracer concentration equation),
c = c(x, t), gives by

φ
∂c

∂t
+ u · ∇c− div(D∇c) = g in Ω× (0, T ), (2.3)

with the following initial and boundary conditions

c(x, 0) = c0(x) in Ω, (2.4)

D∇c · n = 0 on ∂Ω× (0, T ), (2.5)

u · n = 0 on ∂Ω× (0, T ). (2.6)

In (2.1-2.6) K = K(x) is the permeability tensor and φ is the porosity. Functions f
and g are the source terms, n is the exterior normal to ∂Ω and

D = D(u) =
(
αmol + αt |u|

)
I +

αl − αt
|u|

u⊗ u (2.7)

is the dispersion-di�usion tensor [22] where αmol, αl and αt are the molecular dif-
fusion, longitudinal and transversal dispersion coe�cients, respectively, with the
domain Ω ⊂ Rn, ∂Ω its boundary and T ∈ R, T > 0.

3. The Hybrid Method For Darcy Flow Problem

Let Th = {K} be a regular �nite element mesh on the domain Ω

(
Ω =

⋃
K
K
)
. The

set of all edges of all elements K is Eh = {e : e is an edge of K for all K ∈ Th}
with E0

h denoting the set of the interior edges. To introduce the hybrid formulation
we �rst multiply equations (2.1)-(2.2) by their respective weighting functions and
integrate by parts on each element K, getting the following local weak form

(K−1u,v)K − (p,div v)K +

∫
∂K
p(v · nK)ds = 0, ∀v ∈ UK, (3.1)

−(div u, q)K + (f, q)K = 0, ∀q ∈ QK. (3.2)
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UK = {v ∈
[
L2 (K)

]2
,div v ∈ L2 (K) , ∀K ∈ Th} and QK =

{
q ∈ L2 (K) ,∀K ∈ Th

}
are the local function spaces on each element K. For each element K ∈ Th, (w, v)K =∫
K w vdK denotes the usual L2(K) inner product, ∂K is set of all edges of element
K and nK is the external normal to ∂K. For a given p = p̄ on ∂K, we can solve the
set of local problems:

For each K ∈ Th, �nd {u, p} ∈ UK ×QK, ∀ {v, q} ∈ UK ×QK such that

(K−1u,v)K − (p,div v)K − (div u, q)K = −(f, q)K −
∫
∂K
p̄(v · nK)ds.

Following the ideas of Arnold et al. [23], an approximation for the pressure trace,
p̄, can be obtained by solving a global problem associated with the dual hybrid
mixed formulation. De�ning the function spaces M = {µ ∈ L2(e), ∀e ∈ Eh},
U =

∏
K UK and Q =

∏
KQK the dual hybrid formulation consists in:

Find u ∈ U , p ∈ Q and λ ∈M, such that

∑
K∈Th

[
(K−1u,v)K − (p, div v)K +

∫
∂K
λ(v · nK)ds

]
= 0,∀v ∈ U , (3.3)

∑
K∈Th

[
− (div u, q)K + (f, q)K

]
= 0,∀q ∈ Q, (3.4)

∑
K∈Th

∫
∂K
µ(u · nK)ds = 0,∀µ ∈M. (3.5)

The Lagrange multiplier λ is identi�ed with trace of the pressure on the all edges
of the elements K, λ = p̄, unlike the classical primal hybrid formulation of Raviart-
Thomas [1] and the stabilized formulation of Ewing et al. [24], where the multiplier
is identi�ed with the �ux. The third equation, (3.5), weakly imposes the continuity
of the normal component of the velocity �eld (�ux continuity) and the �ux boundary
condition u · n = 0 on ∂Ω.

3.1. The SDHM Formulation

To generate a stable and adjoint consistent formulation, allowing greater �exibility
in the choice of the �nite element approximation spaces for velocity and pressure
�elds and the Lagrange multiplier, we add to the system (3.3)-(3.5) inner stabi-
lization terms associated with least square residual forms, coming from the mass
balance, the Darcy's law and the curl of Darcy's law, as in [12]. Furthermore, we
add a stabilization term for the multiplier according to [25] obtaining the Stabilized
Dual Hybrid Mixed (SDHM) formulation:
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Find u ∈ U , p ∈ Q and λ ∈M ∀v ∈ U , q ∈ Q and µ ∈M, such that∑
K∈Th

[
(K−1u,v)K − (p,div v)K +

∫
∂K
λ(v · nK)ds+

1

2
(‖K−1‖∞(div u− f),div v)K

− 1

2
(K−1u +∇p,v)K +

1

2
(‖K‖∞(∇×K−1u),∇×K−1v)K

]
= 0, (3.6)∑

K∈Th

[
−(div u, q)K + (f, q)K −

1

2
(K−1u +∇p,K∇q)K +

∫
∂K
‖K‖∞β(p− λ)qds

]
= 0,

(3.7)∑
K∈Th

[ ∫
∂K
µ(u · nK)ds+

∫
∂K
‖K‖∞β(λ− p)µds

]
= 0. (3.8)

where U =
∏
K(H1(K)×H1(K)), Q =

∏
KH

1(K),M = {µ ∈ L2(e), ∀e ∈ E0
h}, ∇×

is the curl operator and β = β0

h is the stabilization parameter associated with the
Lagrange multiplier λ, and β0 ∈ R is independent of h.

3.2. Finite Element Approximations

Let Umh = {v ∈ Uδ : v|K ∈ Rm ×Rm ∀K ∈ Th}, Qlh = {q ∈ Qδ : q|K ∈ Rl ∀K ∈
Th} and Ms

h = {µ ∈ M : µ|e ∈ Ps ∀e ∈ E0
h} be the discontinuous Lagrangian

�nite element spaces where Rr is the polynomial set with degree less than or equal
to r if K is a triangle, or less than or equal to r in each cartesian variable if K is a
quadrilateral (r = l or m), and Ps is the polynomial set of degree less than or equal
to s on each edge e. We can now present a �nite element approximation for the
stabilized dual hybrid mixed formulation introduced in the last section. Considering
that {uh, ph}, belonging to the broken function spaces, are de�ned independently
on each element K ∈ Th, we observe that system (3.6)-(3.8) can be split into a set
of local problems de�ned on each element K coupled to the global problem de�ned
on Eh, as follow:
Local problems: Find uh ∈ Umh , ph ∈ Qlh, for each K ∈ Th, ∀vh ∈ Umh and ∀qh ∈ Qlh
such that

(K−1uh,vh)K − (ph,div vh)K +

∫
∂K
λh(vh · nK)ds− 1

2
(K−1uh +∇ph,vh)K

+
1

2
(‖K−1‖∞( div uh − f), div vh)K +

1

2
(‖K‖∞ (∇×K−1uh),∇×K−1vh)K = 0,

(3.9)

−(div uh, qh)K+(f, qh)K−
1

2
(K−1uh+∇ph,K∇qh)K +

∫
∂K
‖K‖∞β(ph−λh)qhds=0,

(3.10)

Global Problem: Find λh ∈Ms
h, ∀µh ∈Ms

h such that∑
K∈Th

[ ∫
∂K

µh(uh · nK)ds+

∫
∂K
‖K‖∞β(λh − ph)µhds

]
= 0. (3.11)
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We observe that the SDHM method is consistent and provides optimal rates
of convergence [17], ensuring �exibility in the choice of the approximation spa-
ces and interpolation functions, unlike the classical dual formulation which the
stability is restricted to appropriate choices of the �nite elements spaces, such as
Raviart-Thomas [1] and Brezzi-Douglas-Marini (BDM) [2] that requiring compro-
mises between the approximation spaces. Moreover, the SDHM method is locally
conservative for equal order approximations of all �elds (l = m = s) and stable
for any value of the edge stabilization parameter β, including β = 0 [17, 16, 18].
The choose of the multiplier as the trace of pressure is crucial to assure that the
local problems (3.9)-(3.10) are solvable for the variables {uh, ph}|K ∈ Umh ×Qlh as
a function of the multiplier λh.

3.2.1. Solver Strategy

Here we de�ne on each element the operators

aK([uh, ph]; [vh, qh]) = (K−1uh,vh)K − (ph,div vh)K +
1

2
‖K−1‖∞(div uh,div vh)K

− (div uh, qh)K −
1

2
(K−1uh +∇ph,vh + K∇qh)K

+
1

2
(‖K‖∞∇× (K−1uh),∇(×K−1vh))K,

bK(λh; [vh, qh]) =

∫
∂K
λh(vh · n)ds+

∫
∂K
β ‖K‖∞ λhqhds,

cK(λh, µh) =

∫
∂K
‖K‖∞ βλhµhds,

and the functional

fK([vh, qh]) = (f, qh)K +
1

2
‖K−1‖∞ (f, div vh)K.

Then, the SDHM method is now reformulated as
Find uh ∈ Umh , ph ∈ Qlh, for each K ∈ Th and λh ∈Ms

h such that

aK([uh, ph]; [vh, qh]) + bK(λh; [vh, qh]) = fK([vh, qh]), (3.12)∑
K∈Th

bTK([uh, ph], µh) +
∑
K∈Th

cK(λh, µh) = 0, (3.13)

∀[vh, qh] ∈ Umh × Qlh and ∀µh ∈ Ms
h. Considering AK, BK and CK matrices

generated respectively by the local operators aK(· , · ), bK(· , · ) and cK(· , · ) and FK
the vector given by fK(· ), we can rewrite (3.12)-(3.13) in the following matrix form,

AKU + BKΛ = FK, ∀K ∈ Th (3.14)∑
K∈Th

BT
KU +

∑
K∈Th

CKΛ = 0, (3.15)
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Using the static condensation strategy, and given that the local matrix AK is posi-
tive de�nite, we have from (3.14) that U = {uh, ph} can be expressing in terms of
Λ = {λh} as

U = A−1
K (FK −BKΛ). (3.16)

Then, replacing (3.16) in (3.15), we obtain the global system only for Λ = {λh}∑
K∈Th

(CK −BT
KA−1
K BK)Λ = −

∑
K∈Th

BT
KA−1
K FK. (3.17)

After solving (3.17), the vector U is obtained from (3.16). A great advantage of
this methodology is the size reduction of the overall system, now involving only
the degrees of freedom associated with the multipliers Λ, leading to a reduced
computational cost, since the time needed to solve all local problems is negligible
compared to the time to solve the global system.

4. Tracer Injection Approximations

4.1. Fully discrete SUPG approximation

A common approach to transient problems is based on fully discrete formulations
obtained by combining �nite di�erence approximations in time with �nite element
methods in space. According to the Rothe method (or horizontal method of lines)
[26] of �rst discretizing in time and then in space on each discrete time level, we
choose the partition I∆ = {0 = t0 < t1 < . . . < tN = T} of the interval I = [0, T ]
with ∆tn = tn− tn−1 and ∆t = maxn ∆tn. Then, using a backward �nite di�erence
scheme to approximate the time derivative in equation (2.3), we have the following
sequentially implicit time-stepping algorithm: for n = 0, 1, . . . , N − 1, given f , g
and c0(x), �nd cn+1 satisfying

φ
cn+1 − cn

∆t
+ un · ∇cn+1 − div(D(un)∇cn+1) = gn+1 in Ω, (4.1)

D(un)∇cn+1 · n = 0 on ∂Ω, (4.2)

with

un = −K∇pn in Ω, (4.3)

div un = fn on Ω, (4.4)

and un ·n = 0 on ∂Ω and
∫

Ω
pndx = 0, t ∈ (0, T ). The concentration is achieved at

time n+ 1 and the velocity and pressure are given at time n. A complete numerical
analysis, demonstrating existence and uniqueness of solution for the above semi-
discrete system can be found in [19, 20]. Note that this sequentially implicit method
can be written in predictor-corrector form and the original system becomes partially
uncoupled and linearized.

For the tracer injection processes, the velocity and pressure approximations are
calculated just once at the beginning of the process, un ≡ u ∀n = 0, 1, . . . , N − 1
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and, then the concentration is obtained for all instants. Hereafter, to simplify the
notation, the superscript n in the velocity and pressure approximations are dropped
out.

We combine the semi-discrete approximation (4.1)-(4.2) with a stabilized �nite
element method in space (the SUPG method), and introduce the following fully
discrete approximation for the concentration equation [17, 16, 18]:
For time levels n = 0, 1, 2, . . ., given uh and c0 �nd cn+1

h ∈ Xr
h, such that

B(uh; cn+1
h , ηh) = F (cnh; ηh), ∀ηh ∈ Xr

h, (4.5)

with (c0h, ηh) = (c0, ηh), ∀ηh ∈ Xr
h, where X

r
h is a continuous Lagrangian �nite

element space of degree r ≥ 1; and

B(uh; cn+1
h , ηh) = (cn+1

h , ηh) + ∆t(uh · ∇cn+1
h , ηh) + ∆t(D(uh)∇cn+1

h ,∇ηh)

+
∑
K

(cn+1
h + ∆t uh · ∇cn+1

h , δKuh · ∇ηh)K

+
∑
K

(−∆tdiv(D(uh)∇cn+1
h ), δKuh · ∇ηh)K, (4.6)

F (cnh, ηh) = (cnh + ∆tgn+1, ηh) +
∑
K

(cnh + ∆tgn+1, δKuh · ∇ηh)K. (4.7)

The stabilization parameter δK is de�ned on each K ∈ Th by [27, 19, 20] as

δK =


hK

2‖uh‖L∞(K)
, PeK ≥ 1,

0, 0 < PeK < 1,
(4.8)

where

PeK =
mK‖uh‖L∞(K)hK

D2
K/dK

(4.9)

is the mesh-dependent Péclet number, dK = αmol + αt inf
x∈K
|uh(x)|,mK =

2

3
min(

1

2
, cinv),

DK =
√

2(αmol + αl‖uh‖L∞(K))2 + 2(3αl − 2αt)2‖∇uh‖2L∞(K)h
2
Kcinv, where cinv is

the typical inverse constant of �nite element spaces. The terms in the right-hand
side of (4.6)�(4.7) multiplied by δK are responsible for the additional stability of
this method [27]. In the numerical experiments this proposal will be identi�ed as
the SUPG approach.

4.2. A semi-analytical methodology

Following [28], we present a semi-analytical methodology which combines an analy-
tical solution for the concentration given by [21] with a �nite element approxima-
tion for the velocity �eld. According to [21], neglecting transversal �ux dispersion
(αmol = αt = 0), the tracer concentration c(t) at the producer well is expressed by

c(t) =
ĉVtr

2qt(παl)1/2

Nsl∑
n=1

1

I
1/2
n

exp

(
− (tbtn − t)2

4αlIn

)
, (4.10)
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where Nsl is the number of streamlines arriving at the production well, ĉ is the
injection tracer concentration, Vtr is the injected tracer volume, qt is the total
injection rate, αl is the longitudinal dispersion coe�cient, tbtn is the breakthrough

time for the streamline n given by tbtn =

∫ xpw

xiw

ds

vn
and In =

∫ xpw

xiw

ds

vn2
, where vn

is the Darcy velocity on the streamline n, with xiw and xpw the coordinates of the
injection and production wells, respectively.

In [21] the Darcy's velocity vn is also obtained analytically for particular tracer
injection problems in homogeneous porous media. However, from the de�nitions of
tbtn and In it is clear that the semi-analytical methodology (4.10) can be naturally
reformulated replacing vn by an approximation of the velocity �eld. In Section 5 we
will observe, through numerical experiments, the in�uence of the velocity approxi-
mations on some tracer transport simulations in homogeneous and heterogeneous
porous media solving the Darcy system (2.1)-(2.2) via the SDHM method, the clas-
sical Galerkin method and a post-processing technique.

Classical Galerkin method. Substituting (2.2) into (2.1) the Galerkin ap-
proximation of the elliptic sub-system reads: Find ph ∈ N r

h , such that

(K−1∇ph,∇ϕ) = (f, ϕh), ∀ϕh ∈ N r
h , (4.11)

with N r
h a continuous Lagrangian �nite element space. From the pressure appro-

ximation (4.11) and Darcy's law (2.2), it is natural to calculate the velocity �eld
giving by

uG = −K∇ph. (4.12)

This approach generates a discontinuous velocity �eld at the element interfaces
which do not satisfy the boundary condition uG · n and, in addition, has a sub-
optimal convergence rate.

Post-processing. To approximate the velocity �eld with improved accuracy
we employed a post-processing technique [20] based on a variational formulation of
Darcy's law combined with the residual of the balance equation:
For ph given by (4.11), �nd uPP ∈ q

h = {vh ∈ N r
h × N r

h , vh · n = 0 on ∂Ω} such
that

(K−1uPP +∇ph,vh) + τ(div uPP − f, div vh) = 0, ∀vh ∈ q
h. (4.13)

For homogeneous media with regular solution this post-processing presents a gain
of O(h1/2) [20] compare to the classical Galerkin approximation (4.12). However,
it does not produce accurate solution when applied to heterogeneous porous media
as we will observe in the numerical experiments.

5. Numerical Simulations

To illustrate the performance of the methodology proposed in Sections 3 and 4 we
present the results of tracer injection simulations in a quarter of a repeated �ve-spot
pattern in two dimensions consisting of a square domain (unit thickness) with side
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L = 1000ft. The injector well is located at the lower-left corner (x = y = 0) and
the producer well at the upper-right corner (x = y = L). The coe�cients have been
chosen as αmol = 0.0, αl = 1.0 ft, αt = 0.0 ft and the porosity φ = 0.1. The tracer
slug is 0.25% of the porous volume. These data were taken from [19].

In all simulations we use uniform meshes of 80 × 80 bilinear quadrilateral ele-
ments to approximate concentration as well as velocity and pressure. Equal order
interpolation functions (m = l = r = s = 1) are employed to all variables. Discon-
tinuous Lagrangian interpolation to the SDHM method and continuous Lagrangian
interpolation to the Galerkin method and post-processing technique are used. The
post-processing stabilization parameter is �xed as τ = 1.0 and the stabilization
parameter associated with the Lagrange multiplier in SDHM is β0 = 0. The semi-
analytical methodology parameters are ĉ = 1.0, Vtr = 1000 ft2, qt = 200 ft2/day
and Nsl = 399.

In order to compare the di�erents approaches described in Section 3, we take into
account three scenarios: Case 1, Case 2 and Case 3. In Case 1 the porous medium is
homogeneous with the permeability constant, K = 1000 mD and the other scenarios
consider heterogeneous porous media with subregions having di�erent permeability
values (Figure 1).

(a) Case 2 (b) Case 3

Figura 1: Heterogeneous scenarios: (a) Case 2 and (b) Case 3.

5.1. Homogeneous Porous Medium

Figure 2 exhibits comparisons between the results of the SUPG approach and the
semi-analytical methodology for the concentration with velocity approximations
obtained by the SDHM formulation, the post-processing technique (PP) and the
Galerkin method. For both approximations we see that the SDHM method has
the closest pro�le to the analytical solution obtained by Abbaszadeh-Dehghani [21]
(peak at 0.01) as showed in Figure 2-(b). The conservative property of the SDHM
method is illustrated in Figure 3. Therefore, we can conclude that the SDHM formu-
lation is the more stable and provides accurate results in all approaches considered
here for the transport equation.
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(b) Semi-analytical methodology

Figura 2: Case 1 - Time history of the tracer concentration to di�erent velocity
�eld approximations.
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(a) SUPG approach
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Figura 3: Case 1 - Tracer volume of the tracer concentration to di�erent velocity
�eld approximations.

Next, we study the in�uence of the Péclet number (Pe) on the tracer injection
processes. Figure 4 shows the time history of the tracer concentration in the produ-
cer well with the SUPG approach for Péclet numbers corresponding to 100, 50, 25
and 12.5. As the Péclet number decrease the peak concentration value tends to the
Abbaszadeh-Dehghani exact solution. For high Péclet numbers (Pe ≥ 50) spurious
oscillations associated with the use of the SUPG approach are identi�ed. These
oscillations become less pronounced when we combine the SUPG approach with the
SDHM method, as can be best viewed in the zoom regions plotted in Figure 4 (right
side).

5.2. Heterogeneous Porous Media

In this subsection, we consider two problems de�ned in the heterogeneous domains
plotted in Figure 1 (Case 2 and Case 3). Figures 5 and 6 show the tracer concen-
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Figura 4: Case 1 - Time history of the tracer concentration (left) and a zoom in the
spurious oscillations region (right). The Péclet in�uence study. Galerkin method,
post-processing technique and the SDHM method (from top to bottom).

tration maps at t = 1000 days when we use the SUPG approach combined with the
Galerkin method, the post-processing technique and the SDHM method to ∆t = 5
days. Similar transport behaviours are observed for all velocity approximations.

The time history of the tracer concentration in the producer well for Case 2
and Case 3 using the SUPG approach are showed in Figures 7 and 8 for the con-
centration with velocity approximations obtained by the SDHM formulation, the
post-processing technique (PP) and the Galerkin method. Figure 7 exhibits two
concentration peaks due to the in�uence of the lower permeability region, which
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Figura 5: Case 2- Tracer concentration maps. (a) Galerkin method, (b) post-
processing technique and (c) the SDHM method.

act like a barrier to the �ow. The SDHM formulation produces the highest peak
according to the physical expected behavior. Note that the tracer concentration re-
aches the producer well and, the peak concentration is achieved, in an earlier time
compared with that observed in Case 1 (see Figure 2). This is due to the fact that
there are preferential �ow paths where the velocity �ow is increased as a result of
the presence of a subregion of lower permeability.

Next in Figure 8 we observe a similar behavior to the homogeneous scenario
(Case 1) but with higher concentration values. This can be better understand in
Case 1 and Case 3 results plot in Figure 9, where we compare the time history
of the tracer concentration obtained by the semi-analytical solution combined with
the post-procesing technique and the SDHM formulation. The subregions with
di�erents permeabilities have the same domain width. Therefore, they act as a
delay to the �ow. Thus, the concentration reaches the producer well later than the
Case 1.
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Figura 6: Case 3 - Tracer concentration maps. (a) Galerkin method, (b) post-
processing technique and (c) the SDHM method.

6. Conclusion

In this paper the tracer injection process into homogeneous and heterogeneous me-
dia was solved using two di�erent methodologies for the concentration approxima-
tion combined with three formulations for the velocity �eld. When the SDHM
formulation is employed in the calculation of velocity, combined with the SUPG
approach their results lead to more accurate approximations for the concentration.
This combination is able to capture the expected discontinuity properties of the
solution and, consequently, a proper physical solution. The numerical experiments
performed, illustrated the �exibility and robustness of this formulation.

Resumo. Embora a concentração seja a variável mais importante nos processos
de injeção de traçadores, uma e�ciente e precisa aproximação do campo de veloci-
dades é crucial para obter um bom comportamento físico para o problema. Neste
artigo, analisamos o método misto dual híbrido estabilizado (SDHM) para resolver
o sistema de Darcy nas variáveis de velocidade e de pressão a partir da equação
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Figura 7: Case 2 - Time history of the tracer concentration to di�erent velocity
�eld approximations.
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Figura 8: Case 3 - Time history of the tracer concentration to di�erent velocity
�eld approximations.

de conservação de massa e da lei de Darcy. Esta abordagem é localmente conser-
vativa, livre de comprometimento entre os espaços de aproximação de elementos
�nitos e capaz de lidar com meios heterogêneos com propriedades descontínuas. A
concentração do traçador é resolvida através de uma combinação do método Stre-

amline Upwind Petrov-Galeklin (SUPG) no espaço com um método de diferenças
�nitas implícita no tempo. Também empregamos uma abordagem semi-analítica
(solução analítica de Abbaszadeh-Dehghani) para integrar a equação de transporte.
Um estudo comparativo numérico utilizando a formulação de SDHM, o método de
Galerkin e uma técnica de pós-processamento para calcular o campo de velocidade
em combinação com essas metodologias de aproximação da concentração são apre-
sentados. Em todas as comparações, a formulação SDHM aparece como a mais
e�ciente, precisa e quase sem oscilações espúrias.
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Figura 9: Time history of the tracer concentration. Comparisons among
Abbaszadeh-Dehghani solution with the semi-analytical methodology combined
with the (a) Post-Processing technique and the (b) SDHM method.
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(a) SUPG approach
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Figura 10: Case 3 - Tracer volume for the tracer concentration. Comparison among
the velocity �eld approximations: (a) and (b) SDHM, Post-Processing (PP) and
Galerkin.

Palavras-Chave. Deslocamentos miscíveis, Métodos hibridizados, Simulações de
reservatórios de óleos
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