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Numerical solution of heat equation with singular
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Abstract. In this work we study the numerical solution of one-dimensional heat
diffusion equation subject to Robin boundary conditions multiplied with a small
parameter epsilon greater than zero. The numerical evidences tell us that the
numerical solution of the differential equation with Robin boundary condition are
very close in certain sense of the analytic solution of the problem with homogeneous
Dirichlet boundary conditions when ε tends to zero.
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1. Introduction

It is well known that the diffusion differential equation models the transient con-
duction phenomenon that occurs in numerous engineering applications and may
be analyzed by using different analytic and numerical methods. Many transient
problems involving geometry and simple boundary value conditions, their analytic
solution are known explicitly, especially the one-dimensional (1D) case. Still for
the two-dimensional (2D) and three-dimensional (3D) cases some of the analytic
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solutions are known (see [1, 2]). However, in most cases, the geometry or bound-
ary conditions make it impossible to apply analytic techniques to solve the heat
diffusion equation.

In this work we use the Crank-Nicolson Finite Difference Method (FDM) (see
[9]) to solve the 1D heat diffusion equation in transient regime with Robin boundary
conditions given by 

ut = uxx, −1 < x < 1, t > 0,

−εux(−1) = u(−1),

εux(1) = u(1),

(1.1)

where ε ∈ (0, 1].
If ε = 0 in (1.1) we have the classical problem with homogeneous Dirichlet

boundary conditions for the heat equation which is well known.
There is great interest on heat problems and much work was done consider-

ing different boundary conditions. Nevertheless, the particular (1.1) problem with
singular boundary conditions, depending on a positive parameter, has not been
studied previously neither analytically nor numerically. Our little contribution with
this kind of problems which depend of a small parameter is to show numerical
solutions when we vary the values of ε.

Many problems in the industry are modeled by the heat equation subject to
specific initial and boundary conditions, and sometimes it is not possible to get
the analytic solution. Actually many researchers use different numerical techniques
to understand the behavior of the solution (for more details see [5, 6, 10] and in
references therein).

This paper is organized as follows. In Section 2, we state that the equation
(1.1) has unique solution for each ε > 0. Also we study asymptotic behaviour of
the eigenvalues of (Eε) when ε tends to zero. In Section 3 a brief description of the
problem with Robin boundary condition in conjunction with the FDM approach is
presented. The numerical experiments are discussed in Section 4, and finally the
conclusions are presented in Section 5.

2. On the existence of solution

Let Ω = (−1, 1) and the Lebesgue space X = L2(Ω). Let Aε : D(Aε) ⊂ L2(Ω) →
L2(Ω) be an unbounded linear operator defined through

D(Aε) =
{
u ∈ H2(Ω) : −εux(−1) = u(−1), εux(1) = u(1)

}
, (2.1)

Aεu = u′′. (2.2)

Thus we can write the equation (1.1) as an evolution equation in L2(Ω) (see [7])
as follows {

u̇ = Aεu, t > 0,

u(0) = u0 ∈ H1(Ω).
(2.3)
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Theorem 2.1. For each u0 ∈ H1(Ω), there exists a unique solution u = u(t, u0)
of (2.3) defined on its maximal interval of existence [0, τu0) which mean that either
τu0

= +∞, or if τu0
<∞ them lim sup

t→τ−
u0

‖u(t, u0)‖ = +∞.

Proof. See [1, 7]. �

It is well known that for a fixed value ε > 0, the problem (2.3) generates a
well-defined linear semigroup in H1(Ω), the solutions enter W 1,p(Ω) for any p such
that 1 < p <∞ and are classical for t positive (for more details see [1, 7]).

2.1. Equilibrium solution for (1.1)

The equilibrium solution of (1.1) satisfy the elliptic boundary value problem
uxx = 0, t > 0, −1 < x < 1,

−εux(−1) = u(−1),

εux(1) = u(1).

(2.4)

Theorem 2.2. For every ε > 0 the unique equilibrium solution of (2.4) is uε ≡ 0.

Proof. The solution of the problem (2.4) is given by

u(x) =
(u(1)− u(−1)

2

)
x+

u(1) + u(−1)

2
, x ∈ Ω. (2.5)

By the boundary conditions (2.4) in (2.5) we have that u(−1) and u(1) satisfy

u(1) = ε
u(1)− u(−1)

2
= −u(−1). (2.6)

Thus we have u(−1) + u(1) = 0, and (2.5) provides

u(x) =
(u(1)− u(−1)

2

)
x. (2.7)

Again, by using the boundary conditions (2.4) we have

u(1)− u(−1)

2
= ε

u(1)− u(−1)

2
, (2.8)

and for ε 6= 1 we have

u(1)− u(−1) = 0. (2.9)

Finally, from (2.9) we conclude that uε ≡ 0. �

Remark 2.1. From the Theorem 2.2 we can say that uε ≡ 0 converges to the
solution u ≡ 0 of the problem with homogeneous Dirichlet bounday conditions.
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2.2. Eigenvalue problem

Consider the eigenvalue problem associated with the linear operator Aε
uxx = λε u, in Ω,

−εux(−1) = u(−1),

εux(1) = u(1).

(Eε)

For each ε > 0, the problem (Eε) has a sequence of real eigenvalues {λεn}∞n=1, with
an L2(Ω)-orthogonal and complete associated system of eigenfunctions {ϕεn}∞n=1.
This conclusion is possible because the operator Aε is densely defined closed and
self-adjoint in L2(Ω).

From (2.4) we conclude that zero is not an eigenvalue for (Eε). The variational
formulation for λεn is given by

λεn = min
ψ∈Yn

ε(ψ′(1)2 + ψ′(−1)2)−
∫

Ω
|ψ′|2∫

Ω

ψ2

 , (2.10)

where

Yn =
{
w ∈ C2(Ω) : w 6= 0, w

∣∣1
−1

= ±εw
∣∣1
−1
,

∫
Ω

wϕεj = 0,∀j = 1, 2, · · · , n− 1
}
.

For more details about the variational formulation of boundary value problems
see for example [4, Chapter 8] and [3, Chapter 5].

Let λε = ω2, ω ∈ R, and ϕε(x) = cosh(ωx) the eigenfunction associated with
λε. From the boundary conditions for ϕε, we have

tanhω =
1

εω
. (2.11)

The solutions of (2.11) can be determined numerically. They can also be ob-
tained approximately by sketching the graphs of ψ1(ω) = tanhω and ψ2(ω) = 1

εω
for ε = 0.1, 0.09, 0.08, 0.07, and identifying the points of intersection of the curves
(see in Fig. 1). Let ω1(ε) be the interception points of the curves ψ1(ω) and ψ2(ω).
Thus λε1 = ω1(ε)2.

Now, taking the eigenfunction ϕε(x) = sinh(ωx) and using the boundary condi-
tion, we have

tanhω = εω. (2.12)

In Fig. 2 we also have plotted the graphs of φ1(ω) = tanhω and φ2(ω) = εω for
ε = 0.1, 0.09, 0.08, 0.07, as function of ω. Let ω2(ε) be the interception points of the
curves φ1(ω) and φ2(ω). Thus λε2 = ω2(ε)2.

From Figs. 1 and 2 we can observe that the eigenvalues λε1 and λε2 increase
continually when ε tends to zero, respectively.



Numerical solution of heat equation 5

Figure 1: Graphical solution of tanh(ω) = 1
εω for ε = 0.1, 0.09, 0.08, 0.07.

Figure 2: Graphical solution of tanh(ω) = εω for ε = 0.1, 0.09, 0.08, 0.07.

Lemma 2.1. Let ε > 0. Then λε1 > λε2. Moreover λε1, λ
ε
2 →∞ when ε→ 0.
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Proof. . We know that the functions tanhω and cothω can be write as

tanhω = 1− 2 e−2ω + 2 e−4ω − 2 e−6ω + · · · (2.13)

cothω = 1 + 2 e−2ω + 2 e−4ω + 2 e−6ω + · · · (2.14)

From the equation (2.11), we have

ω =
1

ε

1

tanhω
. (2.15)

When ω is large enough, tanhω approaches 1. Thus, from (2.15) we have

ω =
1

ε
coth

1

ε
=

1

ε

(
1 + 2 e−2/ε + 2 e−4/ε + 2 e−6/ε + · · ·

)
. (2.16)

Since λε1 = ω1(ε)2, we have

λε1 =
1

ε2
+

4

ε2
e−2/ε +

8

ε2
e−4/ε + · · · . (2.17)

From (2.12) we obtain

ω =
1

ε
tanhω. (2.18)

When ω is large enough, tanhω approaches 1. Thus, from (2.18) we have

ω =
1

ε
tanh

1

ε
=

1

ε

(
1− 2 e−2/ε + 2 e−4/ε − 2 e−6/ε + · · ·

)
. (2.19)

Since λε2 = ω2(ε)2, we have

λε2 =
1

ε2
− 4

ε2
e−2/ε +

8

ε2
e−4/ε − · · · . (2.20)

From (2.17) and (2.20) follow the results. �
Also from (2.17) and (2.20) we have that the gap between λε1 and λε2 is given by

λε1 − λε2 ≈
8

ε2
e−2/ε. (2.21)

Remark 2.2. When ε tends to zero, the problem (Eε) becomes{
uxx = λ0 u, −1 < x < 1,

u(−1) = u(1) = 0.
(E0)

We known that the eigenvalues of the problem (E0) are given by λ0
n = −n2π2,

n ∈ N.
When ε tends to infinity, the problem (Eε) becomes{

uxx = λ0 u, −1 < x < 1,

ux(−1) = ux(1) = 0.
(E∞)
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3. The FDM approach

In this section we present the numerical schemes to solve (1.1) by applying the
finite difference method (FDM) combined with the classic and unconditionally stable
Crank-Nicolson method (see [8]).

To solve (1.1), the spatial domain [−1, 1] is discretized with uniform grid of n
divisions of size h, where each spatial nodal points are xi = ih − 1. Similarly, the
temporal domain [0, T ] is divided in m parts of size k, where T > 0 and the temporal
nodal points are indexed by tj = jk. With this indexes, we can use the following
notation for the values of u: uij = u(xi, tj) and ui = u(xi, t).

From the boundary condition given in (1.1) at x = −1 and for ε > 0 we write

ux(−1, t) =
−u(−1, t)

ε
.

Assuming that at x = −1, the function u is twice differentiable in x, so that we can
write

uxx(−1, t) =
−ux(−1, t)

ε
=
u(−1, t)

ε2
,

and in the same way at x = 1 we get

uxx(1, t) =
ux(1, t)

ε
=
u(1, t)

ε2
.

Also, by using the finite difference approach for uxx(t) (see [9]), the problema (1.1)
can be write

dui(t)

dt
=
ui+1(t)− 2ui(t) + ui−1(t)

h2
(3.1)

for i = 1, ..., n− 1, and for i = 0 and i = n, we have

du0(t)

dt
=
u0(t)

ε2
, (3.2)

and

dun(t)

dt
=
un(t)

ε2
, (3.3)

respectively. Thus by using (3.1)-(3.3), the problem (1.1) can be transformed into
the first-order matrix differential equation given by
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∂

∂t



u0

u1

u2

...
un−2

un−1

un


=

1

h2



h2

ε2 0 0 · · · 0 0 0

1 −2 1
. . . 0

0 1 −2
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . . −2 1 0

0
. . . 1 −2 1

0 0 0 · · · 0 0 h2

ε2





u0

u1

u2

...
un−2

un−1

un


, (3.4)

or in compact way

dU

dt
= LU, (3.5)

where, the matrix L represents the discrete counterpart of the corresponding differ-
ential operator given in (1.1), which is a tridiagonal band matrix and U denotes a
vector with the unknown values of u defined over the nodes of the spatial mesh.
There are two general methods to solve (3.5): the explicit and implicit finite dif-
ference schemes. The type of implicit scheme adopted in this work was the Crank-
Nicolson algorithm (see [8]).

4. Numerical Results

For the numerical examples we consider the initial condition given by

u(x, 0) = cos
(π

2
x
)
, (4.1)

where for homogeneous Dirichlet boundary condition, which is obtained from (1.1)
with ε = 0, the analytical solution is

u(x, t) = exp

(
−π

2

4
t

)
cos
(π

2
x
)
. (4.2)

The examples were solved using n = 20 divisions in x axis and m = 100 divisions
in temporal axis t. In Fig. 3 we display the spatial behavior of the solution for
t = 1.5 considering several values of ε: ε = 0.08, ε = 0.05, ε = 0.025, ε = 0.0075.
The absolute error and the maximum error norm between analytical and numerical
solution, ua and un, are calculated and shown in Tables 1 and 2, respectively. In
Fig. 4 we show the temporal behavior of the solution for the same values of ε used
in the Fig. 3 but at x = 0.8. From these simulations, shown in Figs. 3 and 4
and in Tables 1 and 2, we can see that the numerical solutions of (1.1), which is a
boundary value problem with Robin boundary conditions, converges to the exact
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Figure 3: Numerical solutions of (1.1) when ε→ 0 at t = 1.5.

Figure 4: Numerical solutions of (1.1) when ε→ 0 at x = 0.8.

solution of the problem with homogeneous Dirichlet boundary conditions, when ε
tends to zero.
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The Figs. 5 and 6 display the temporal evolution of the solutions with the initial
condition given by (4.1), the numerical solution for ε = 0.05 in Fig. 5 and analytical
solution in 6. It is worth noting that the numerical solution presented in Fig. 5 for
ε = 0.05 agrees very well with analytic solution of the problem with homogeneous
Dirichlet boundary conditions presented in Fig. 6.

Figure 5: Temporal evolution of the numerical solution obtained with initial condi-
tion given by (4.1) and for ε = 0.05.

5. Conclusions

In the first part of the paper, we prove several results on the well-posedness of
the system (1.1) and the associated stationary problem. In the second part, the
application of the Crank-Nicolson for the numerical solution of (1.1), involving
the Robin boundary condition, has been presented here. The usefulness of this
numerical technique has also been demonstrated by means of examples involving
the solution of (1.1) for several values of ε. Analytical approaches and numerical
simulations have clearly illustrated the asymptotic behaviour of the solution of (1.1)
when ε tends to zero. Continuous dependence of the solutions of (1.1) from the ε
parameter has also been demonstrated.

Resumo. Neste trabalho, obtemos soluções numéricas da equação diferencial de
difusão do calor unidimensional com um parâmetro pequeno ε nas condições de
contorno de Robin. Exemplos numéricos demonstram que as soluções numéricas do
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Table 1: Absolute error ‖ua − un‖ in function of x calculated from the data of Fig.
3.

HHHHHx
ε

0.0075 0.025 0.05 0.08

0 0.0012 0.0040 0.0076 0.0115
0.1000 0.0012 0.0039 0.0076 0.0114
0.2000 0.0012 0.0038 0.0076 0.0111
0.3000 0.0011 0.0036 0.0070 0.0105
0.4000 0.0010 0.0034 0.0065 0.0098
0.5000 0.0010 0.0031 0.0059 0.0088
0.6000 0.0009 0.0027 0.0052 0.0077
0.7000 0.0007 0.0023 0.0044 0.0064
0.8000 0.0006 0.0019 0.0034 0.0050
0.9000 0.0005 0.0014 0.0025 0.0034
1.0000 0.0003 0.0008 0.0014 0.0018

Table 2: Maximum error norm of the difference of solutions ua and un.

Simulation ε ‖ua − un‖
1 0.0075 0.00121
2 0.0250 0.00395
3 0.0500 0.00765
4 0.0800 0.01151

problema com condição de contorno de Robin convergem para a soluções anaĺıticas
do problema de Dirichlet homogêneo quando ε tende a zero.

Acknowledgements: The authors are grateful to the referee for valuable remarks
improving the original version of the paper.
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