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ABSTRACT. The aim of this study is to further investigate the two-state Markov chain model for synthetic
generation of daily streamflows. The model presented in [4] to determine the state of the stream and later
studied in [2] and [3] is based on two Markov chains, both of order one. In some areas of Hydrology, where
Markov chains of order one have been successfully used to model events such as daily rainfall, researchers
are concerned about the optimal order of the Markov chain [10]. In this paper, an answer to a similar concern
about the model developed in [4] is given using the Bayesian Information Criterion (BIC) to establish the
order of the Markov chain which best fits the data. The methodology is applied to daily flow series from
seven Brazilian sites. It is seen that the data generated using the optimal order are closer to the real data
than when compared to the model proposed in [4] with the exception of two sites, which exhibit the shortest
time series and are located in the driest regions.

Keywords: Bayesian Information Criterion, Hydrology, Stochastic Processes.

1 INTRODUCTION

In water resources, one of the first daily flow models was Svanidse’s approach [17] in which
the process was modeled based on the definition of a fragment. The fragment is a set of annual
daily flows sequences obtained by dividing the daily flows of the considered year by the mean
annual flow of the same year. The procedure can be described by (a) the generation of the mean
annual flow value; (b) random drawing with replacement of one element of the fragment set; and
(c) multiplication of every member of the fragment by the mean annual flow value. Besides the
over-reliance on the mean flow, Svanidse’s model has the additional shortcoming of assuming
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independence between the mean annual flow and properties of daily flows within the annual
period.

Soon after the proposal of Svanidse’s model, autoregressive models were used for simulation of
daily flows [6, 13]. In [6], the mean monthly flows are generated first and, in a next step, they
are dismembered into daily values using a second-order autoregressive model, AR(2). In [13],
the AR(2) model is directly used to simulate daily flow. In both cases, statistical characteristics
of the AR(2) process are estimated over time. These AR(2) models cannot reproduce recessions
because of the underlying white noise processes.

Later, a model to generate daily streamflow based on linear interpolation of five-day average
flows using statistical modeling for the non-deterministic component of the daily time series was
proposed by [9]. However, the model masks short-term fluctuations, an important feature in daily
streamflow. Non-parametric techniques were used in [12]. The advantage is that non-parametric
methods do not require distributional specifications needed by parametric methods. Generated
streamflow series using this technique may retain the marginal and joint density structure of the
observed hydrologic series including nonlinearity and state dependence. Seasonality in the daily
flow process was modeled by [18] by assuming a periodic structure, within an annual cycle, of
the daily mean and variance. At the same time, he assumed that the system’s response function
was invariant accross the annual cycle, stating that this assumption was often made but only
quoting a past writing [20] in which there are no grounds for such assumption.

One of the objectives in stochastic hydrology is to generate synthetic streamflow sequences
that are statistically similar to observed data. Statistical similarity implies that the generated
sequences have statistical and dependence properties similar to those of the historical record. In
fact, autoregressive moving average models, ARMA(p,q), together with the Fractional Gaussian
Noise (FGN) model and variations dominate streamflow generation [19]. Several of these models
have been applied to daily streamflow generation. However, ARMA(p,q) recessions, which are
sums of negative exponential functions, could not account for the prominent features of daily
streamflow. Even when seasonality is considered (SARIMA), such models cannot capture the
peculiarities of daily flow data.

Markov chains have also been used as an important tool in the studies of hydrometeorological
variables at a daily time interval [14]. Some seminal works include [15] and extensions [4, 5].
These extended models consist of four steps: (i) determination of the days in which flow occurs,
(ii) determination of the days in which a flow increment occurs, (iii) determination of the flow
increment, and (iv) calculation of the flow decrement on days when the flow is reduced. In [5],
the first two steps are modeled by a three-state Markov chain and in [4] these steps are modeled
by two two-state Markov chains. The applicability of both techniques is showed in [2] and their
performances can be seen in [3] where the conclusion is that both alternatives are capable of
simulating the state of the stream.

In accordance with [10], although Markov chains of order one have been successfully employed
to describe the occurrence of daily rainfall, there remains uncertainty concerning the optimal or-
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der for stremflows. Our paper is concerned with the estimation of the optimal order of Markov
chains used in [4] for generation of daily streamflows. In particular, the Bayesian Information
Criteria (BIC) is used to determine the order that better fits a given set of data. We employ this
technique to data from seven Brazilian sites. After estimating the optimal order, we fit the corre-
sponding Markov chain and use it for synthetic generation of daily streamflow, thereby providing
basic hydrologic data for integrated water resources management in the sites considered.

2 METHODOLOGY

The basic model employed here is based on the following steps described in [4] and [2]: for each
month we determine (i) days in which flow occurs, (ii) days in which a flow increment occurs,
(iii) the flow increment/decrement. The two first steps are modeled by two Markov chains. At
step (i), a 1 - 0 Markov chain of order one is used to assign 1 for the occurrence of flow and 0 for
the non-occurrence of flow: [

P11 P10

P01 P00

]
, (2.1)

where Pi j denotes the probability that the system makes a (one-step) transition to state j given
that it is at state i and the resulting 2× 2 matrix represents the transition matrix of the two-
state Markov chain modeling flow occurrence. Once a day with flow has been determined, step
(ii) uses another two-state Markov chain of order one to choose between an increment (R) or a
decrement (F) of flow for that day: [

PRR PRF

PFR PFF

]
, (2.2)

where R corresponds to a day with a flow increment (rise) and F corresponds to a day with a flow
decrement (fall).

In this paper, we modify the basic model described above by letting the order of the Markov
chains used in steps (i) and (ii) be determined by the value of the BIC, estimated from the data.

2.1 Determination of the order of the Markov chains based on information criteria

Akaike’s Information Criterion (AIC) is the standard metric for model comparison in several
areas of data analysis, notably in time series and stochastic processes [7]. However, it is not
consistent to estimate the order of a Markov chain based on the asymptotic distribution of the
resulting estimator [11]. Looking for estimators that have better properties, [11] has suggested the
Bayesian Information Criterion (BIC) [16] as an alternative to the AIC. The order β is estimated
by β̂ which is the value that minimizes the BIC across the models being entertained:

BIC(β̂ ) = min{BIC(β ),β = 0,1,2,3, ...}. (2.3)

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Consider a Markov chain of order β with N states such that ni1,i2,...,iβ is the number of times that
(i1, i2, ..., iβ ) appears in a sample of size n. Then

BIC(β ) =−2
N

∑
i1,i2,...,iβ+1=1

ni1,i2,...,iβ+1 log

(
ni1,i2,...,iβ+1

ni1,i2,...,iβ

)
+ γ(β ) log(n), (2.4)

where γ(β ) = Nβ (N− 1) is the number of free parameters under the hypothesis that the order
is β . Strong consistency of the BIC-derived estimator has been proved and extended for cases
where finiteness of the order is not assumed [8].

Here, for each month, the BIC is used to estimate the order of the chain that best models flow/no
flow and of the chain for increment/decrement. Thus, if the BIC of the raise/fall chain of a given
month indicates that the order is zero, the values of the increment or decrement of the samples
are obtained independently using the rate of climbs as success probability. If the order is one, the
transition matrices flow/no flow and increment/decrement reduce to (2.1) and (2.2) respectively.

When the order of the Markov chain is two, the current state receives two pieces of information,
the first information at time t and the second information at time t + 1 (for rises and falls, for
example, the possible states are: RR,RF,FR, and FF). Thus, the first pair of information refers
to times t and t + 1 and the second pair to times t + 1, t + 2. Generally speaking, in a Markov
chain {xt}t∈N of order two, the transition matrix is given by

P(AB,CD) = P(xt+2 = D,xt+1 =C|xt+1 = B,xt = A), (2.5)

where A,B,C, D are states of the chain and its transition matrix is estimated by

P̂(AB,CD) =


nABD
nAB•

, if nAB• 6= 0, B =C,

0, if nAB• 6= 0, B 6=C,

δAB(CD), if nAB• = 0,

where nABD is the number of ABD transitions that appear in the sample, nAB• is the number of
ABT triples where T is any of the possible states of the chain, and δAB(CD) is the Kronecker
delta, which is equal to 1 when AB =CD (A =C and B = D) and zero otherwise.

The principle of model parsimony [7] dictates that simpler (having fewer parameters) models
should be selected whenever more than one model fits the data well. In practice, the trade-off
between goodness of fit and parsimony must be measured by some metric such as the BIC for
model selection. In the BIC formulation, its value is directly proportional to k (the number of
parameters) and higher orders will be chosen over more parsimonious, lower order, models only
if the goodness of fit is improved.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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2.2 Flow increment and flow decrement

The flow increment is the difference between successive daily flows when the flow of the current
day is greater than the flow of the previous day. Based on data, and following [4, 2, 1], the flow
increment is modeled with a two-parameter gamma distribution with density function

f (x) =
λ α xα−1e−λx

Γ(α)
, x > 0, (2.6)

where α and λ are the shape and scale parameters, respectively, and Γ denotes the gamma func-
tion. The expected value E[X ] and variance Var[X ] of the two-parameter gamma distribution
are

E(X) =
α

λ
and Var(X) =

α

λ 2 . (2.7)

Given daily observed historical series, the expectation and the variance above are replaced by
the corresponding monthly sample statistics, so the shape (α) and scale (λ ) parameters of the
distribution are estimated for each month,

α̂ =

(
x̄
S

)2

and λ̂ =
x̄
S2 ,

where x̄ and S are the sample mean and standard deviation, respectively, for a given month.

The total number of parameters required for this step of the model is, thus, 24 for each of the
seven sites analyzed in Section 3 below.

In order to determine the flow decrement, which occurs when the flow of the current day is less
than the flow of the previous day, the data are divided in two sets:

• days in which the decrement happened when the flow of the previous day is greater than
the monthly mean flow.

• days in which the decrement happened when the flow of the previous day is less than the
monthly mean flow.

The values of the first set are used to estimate the parameter b1, the flow decrement rate in one
day. Once again, following [4, 2], the parameter b1 models the flow decrement when the flow of
the previous day (Qt−1) is greater than the monthly mean flow by means of

Qt = Qt−1e−b1 . (2.8)

In a similar way, the values of the second set are used to estimate the parameter b2, that models
the flow decrement when the flow of the previous day (Qt−1) is less than the monthly mean flow
by the equation:

Qt = Qt−1e−b2 . (2.9)

For each month of the year, the parameters b1 and b2 and the monthly mean flow value are deter-
mined from the observed data. The parameters are estimated by least squares after linearization
of (2.8) and (2.9): logQt = −bi + logQt−1, i = 1,2. Thus, 24 parameters are estimated in this
step.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Figure 1: Flow chart.

2.3 The flow chart

Using the values of all parameters previously calculated and beginning with a flow value that
is randomly generated from the set of all values observed in the first day of the historical data
(usually Jan 1st) the generated streamflow is obtained as given in the flow chart in Figure 1.

When a new month is reached, parameters are automatically updated to the corresponding month,
and the process continues. As used in Aksoy’s model, this process is repeated 10 times. Each
period should have a length of 10 times the number of years of data used, that is, if the size of
the data sample is 10 years, each realization should be run for 100 years.

3 HISTORICAL DATA USED

The developed model was tested using daily data of seven sites across the Brazilian territory in
different periods and climates. The sites are: Carolina, Campo Largo, Porto do Lopes, Fazenda
Ajudas, Ribeiro Gonçalves, Fazenda da Barra and Alberto Flores. The stream gauges are between
122 and 725 m above the mean sea level. The drainage areas of those stream gauges varied from
244 to 275,000 km2. The average long term flow varied from 5.2 to 3790.9 m3/s and the sample
sizes varied from 35 to 60 years. The data were obtained from the Brazilian National Water
Agency (ANA) (www.ana.gov.br). Table 1 summarizes this information.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Table 1: Basic information on gauging stations used in the analysis. † NA/NE refers to North
Atlantic/Northeast basin.

Stream gauge State Latitude Longitude
Elev.

River basin
Drainage Lenght

(m) area (km2) (years)

Carolina MA 7o20′15′′S 47o28′23′′W 122 Tocantins 275,000 46
Campo Largo MA 6o04′01′′ S 44o42′30′′W 204 NA/NE† 5,750 35
Porto do Lopes MA 6o00′26′′S 44o20′24′′W 150 NA/NE 6,890 36
Ribeiro Gonçalves PI 7o34′00′′S 45o15′16′′W 150 NA/NE 31,300 40
Fazenda da Barra MG 20o12′56′′S 46o13′56′′W 668 São Francisco 757 42
Fazenda Ajudas MG 20o5′45′′S 46o03′51′′W 681 São Francisco 244 60
Alberto Flores MG 20o09′25′′S 44o10′00′′W 725 São Francisco 4,120 43

4 RESULTS

4.1 Illustration with the Carolina river data

The Carolina River is used next to illustrate the procedure proposed here to estimate the order of
the Markov chain that modeled the increment/decrement flow. In the sequel, the estimated order
given by the BIC analysis for each river is presented as well as the parameters of the functions
that modeled the flow increment and the flow decrement.

Using eq. (2.4) with data from the Carolina River, the values of the BIC for each month are
shown in Table 2.

Table 2: BIC values for rise/fall - Carolina River Data; minimum BIC in bold.

Month
β

0 1 2 3 4 5

January 1919 1353 1317 1299 1294 1352
February 1677 1169 1144 1103 1114 1168
March 1857 1289 1267 1242 1253 1308
April 1711 1257 1211 1184 1181 1236
May 1163 872 847 812 823 878
June 909 679 658 648 671 729
July 945 658 640 645 646 697
August 1239 842 821 799 821 889
September 1723 1186 1151 1130 1127 1191
October 1876 1462 1429 1407 1422 1467
November 1789 1392 1354 1323 1316 1372
December 1912 1387 1345 1308 1312 1361

The chosen order is the one yielding the smallest BIC. From Table 2, the optimal order β for the
rise/fall matrices for the Carolina River are given in Table 3.

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Table 3: Optimal order of rise/fall chains for each month - Carolina River.

Jan Fev Mar Apr May Jun Jul Aug Sep Oct Nov Dec

β 4 3 3 4 3 3 2 3 4 3 4 3

4.2 Summary of results from all rivers

Implementing the same scheme illustrated above for the Carolina River to the other six sites
yields the results in Table 4. Note that the chosen order was always greater than one.

Table 4: Optimal order of rise/fall chains, for each month, obtained from analyzing the BIC
values for the seven sites used in the analysis.

Site
Optimal β

Jan Fev Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Alberto Flores 3 3 4 3 3 3 3 3 4 4 3 4
Campo Largo 3 3 4 4 4 2 2 2 3 3 3 3
Carolina 4 3 3 4 3 3 2 3 4 3 4 3
Fazenda Ajudas 4 4 4 3 3 3 2 2 4 3 3 4
Fazenda da Barra 4 4 4 3 4 3 3 2 3 3 4 4
Porto do Lopes 3 3 3 3 3 3 2 2 3 3 3 3
Ribeiro Gonçalves 4 4 3 3 3 2 2 2 3 3 4 4

The flow generation scheme proposed in [4], using Markov chains of order one, reproduced the
main features of daily flows quite successfully.

Next, we compare the results from the scheme proposed here (MM), using Markov chains with
estimated order (via BIC), with the results obtained from the model presented in [4] (MA) for
each of the seven stream gauges. Tables 5–11 show streamflow values generated by MM and
those generated by MA. In the last line of each table, the distance between the observed data and
each generated data are displayed. The metric used to calculate such distance is

‖OS−GS‖=

√
12

∑
i=1

[OS(i)−GS(i)]2,

where i indexes month, OS represents the observed streamflow and GS represents the generated
streamflows. The metric ‖OS−GS‖ favors MM over MA for five of the sites. The exceptions are
Campo Largo and Porto Lopes for which GSMA < GSMM.

Figures 2–8 summarize the information in Tables 5–11. For each river, an average flow plot as
well as estimated regression lines of the simulated versus observed data are represented for both
modeling strategies. In Figures 2–8 we verify that the generated sequence from MM is closer to
the observed monthly data in five sites, the exceptions being Campo Largo and Porto Lopes. The
values of GS for both schemes, MM and MA, are close to each other, especially around the peak

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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month. In most cases, both schemes tend to overestimate the monthly flow with GS curves almost
entirely above the OS curve. This cannot be due to faulty choice of the chain order since both
models differ in that respect (MA fixed at order one and MM based on the BIC). We believe that
the flow increment/decrement scheme described in Section 2.2, which is used in both models, is
the source of the problem.

Table 5: Observed (OS) and generated
(GS) streamflows for the two models
considered – Carolina site.

OS
GS

MM MA

January 6168 7012 7075
February 7306 7716 7686
March 7313 7786 7866
April 6108 6571 6518
May 3593 4275 4248
June 2213 2913 2964
July 1674 2496 2594
August 1357 2575 2548
September 1256 2912 2920
October 1575 3144 3189
November 2495 3713 3684
December 4433 5592 5545

‖OS−GS‖ 3530 3567

Table 6: Observed (OS) and generated
(GS) streamflows for the two models
considered – Campo Largo site.

OS
GS

MM MA

January 34.33 37.19 36.61
February 37.03 39.14 38.31
March 39.27 41.73 41.28
April 40.00 42.28 41.82
May 36.63 36.50 37.12
June 32.89 30.29 31.25
July 30.73 26.66 27.10
August 29.29 25.25 24.75
September 28.73 25.92 25.21
October 29.21 27.95 27.54
November 30.18 31.04 31.38
December 31.75 34.48 34.68

‖OS−GS‖ 9.01 8.72
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Figure 2: Comparison of monthly observed and generated flows – Carolina River.
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Figure 3: Comparison of monthly observed and generated flows – Campo Largo.

Table 7: Observed (OS) and generated
(GS) streamflows for the two models
considered – Porto do Lopes site.

OS
GS

MM MA

January 35.46 39.06 37.78
February 38.78 41.66 40.85
March 41.09 44.76 43.69
April 42.31 44.07 43.24
May 38.02 37.95 38.04
June 33.12 32.44 32.76
July 30.74 28.93 28.79
August 29.33 27.15 26.60
September 28.77 28.05 27.56
October 29.23 30.60 29.86
November 30.40 33.19 32.40
December 32.51 35.52 34.70

‖OS−GS‖ 8.08 6.26

Table 8: Observed (OS) and generated
(GS) streamflows for the two models
considered – Ribeiro Gonçalves site.

OS
GS

MM MA

January 294.7 320.4 310.9
February 326.5 320.2 328.7
March 316.3 329.9 338.6
April 277.3 303.4 310.5
May 207.0 236.6 250.3
June 170.0 177.1 184.8
July 155.0 134.5 137.1
August 143.4 113.0 110.0
September 139.1 140.8 145.3
October 161.3 200.0 205.9
November 209.3 250.5 254.9
December 257.4 293.4 294.5

‖OS−GS‖ 91.29 104.37

Tend. Mat. Apl. Comput., 19, N. 3 (2018)
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Figure 4: Comparison of monthly observed and generated flows – Porto Lopes.
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Figure 5: Comparison of monthly observed and generated flows – Ribeiro Gonçalves.
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Table 9: Observed (OS) and generated
(GS) streamflows for the two models
considered – Fazenda da Barra site.

OS
GS

MM MA

January 52.20 58.18 59.06
February 47.25 57.70 56.31
March 38.06 45.91 47.28
April 24.10 34.21 32.57
May 13.75 31.31 33.16
June 10.28 26.10 29.44
July 8.36 25.34 31.89
August 7.15 28.06 33.56
September 7.11 36.04 34.42
October 10.83 22.71 25.14
November 21.11 26.95 27.55
December 41.17 45.45 45.67

‖OS−GS‖ 51.21 57.38

Table 10: Observed (OS) and generated
(GS) streamflows for the two models
considered – Fazenda Ajudas site.

OS
GS

MM MA

January 11.47 12.96 13.17
February 9.90 10.71 10.58
March 8.81 10.02 10.11
April 6.24 7.40 7.85
May 3.92 6.80 7.13
June 2.95 5.64 6.09
July 2.38 4.78 4.66
August 1.89 4.66 4.83
September 1.82 5.22 5.34
October 2.13 4.82 5.07
November 3.61 6.00 5.8
December 7.27 9.68 9.78

‖OS−GS‖ 8.06 8.60
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(b) Linear Regression
MA: GS = 23.9+0.60OS
MM: GS = 20.5+0.68OS

Figure 6: Comparison of monthly observed and generated flows – Fazenda da Barra.
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(a) Observed and generated monthly flow.
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(b) Linear Regression
MA: GS = 3.40+0.79OS
MM: GS = 3.22+0.80OS

Figure 7: Comparison of monthly observed and generated flows – Fazenda Ajuda.

Table 11: Observed (OS) and generated
(GS) streamflows for the two models
considered – Alberto Flores site.

OS
GS

MM MA

January 123.71 134.33 132.85
February 96.96 118.78 114.46
March 81.48 96.38 101.16
April 55.26 80.54 83.40
May 41.62 82.72 82.98
June 35.29 77.84 79.09
July 30.33 76.17 78.15
August 26.46 86.63 84.63
September 27.71 74.69 75.52
October 35.31 55.98 59.77
November 57.87 70.961 72.45
December 96.37 110.61 115.8

‖OS−GS‖ 116.95 119.77
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(a) Observed and generated monthly flow.
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(b) Linear Regression
MA: GS = 55.0+0.59OS
MM: GS = 53.2+0.60OS

Figure 8: Comparison of monthly observed and generated flows – Alberto Flores.

5 CONCLUSION

The use of a variable order for the Markov chains modeling streamflow data is a viable and
simple feature, which can be incorporated into any modeling scheme in stochastic hydrology
based on Markov chains. Here, we have done so by incorporating higher order chains into a
scheme previously used to model streamflow data [4, 2, 3], which is based on Markov chains
of order one. Such scheme was used to describe the occurrence of daily streamflow followed
by stochastic modeling (via Gamma distribution) of flow increment and a simple exponential fit
to model flow decrement. Based on the distance between the observed and generated (monthly)
average flows, the results using higher order chains were better than using order one, with the
exception of two studied cases, which have the shortest time series and are located in the driest
region of Maranhão state. The proposed criterion for choosing the order has been the BIC.
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RESUMO. O objetivo deste estudo é melhorar o modelo de cadeias de Markov de dois
estados usado em Hidrologia para geração sintética de fluxos diários. O modelo apresentado
em [4] e estudado em [2] e [3] baseia-se em duas cadeias de Markov, ambas de ordem um,
para a determinação do estado do fluxo. Em algumas áreas da Hidrologia, onde cadeias
de Markov de ordem um são usadas com sucesso para modelar eventos como precipitação
diária, pesquisadores têm se mostrado preocupados com a ordem ótima de tais cadeias [10].
Neste artigo, uma resposta a uma preocupação similar sobre o modelo desenvolvido em [4]
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é dada, usando o critério de informação de Bayes para estabelecer a ordem de cadeia de
Markov que melhor se encaixa nos dados. A metodologia é aplicada a uma série de fluxos
diários de sete rios brasileiros. Observa-se que os dados gerados usando a ordem estimada
de cada cadeia são mais próximos dos dados reais do que o modelo proposto em [4], com
exceção de dois locais que têm as menores séries temporais e estão localizados nas regiões
mais secas.

Palavras-chave: Hidrologia, processos estocásticos, critério de informação bayesiano.
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