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ABSTRACT. One develops a new mathematical tool, the complex (min,+)-analysis which permits to
define a new variational calculus analogous to the classical one (Euler-Lagrange and Hamilton Jacobi equa-
tions), but which is well-suited for functions defined from Cn to C. We apply this complex variational
calculus to Born-Infeld theory of electromagnetism and show why it does not exhibit nonlinear effects.
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1 INTRODUCTION

As it was said by famous Isaac Newton, Nature likes simplicity. Physicists and mathematicians
have tried to express this metaphysic statement through equations: this is the purpose of the
Least Action Principle, elaborated in the middle of the 18th century by Pierre-Louis Moreau de
Maupertuis and Leonhard Euler [5, 6, 8]. This principle leads to the so-called Euler-Lagrange
equations set [18], which is the kernel of past and future laws in physics.

What is the optimal shape of a house with a fixed volume in order to get a minimal surface which
optimizes the heat loss? Eskimos have known the solution of this problem since a long time: it’s
the hemisphere. Why the angles between three soap films common lines are two by two equal
to 120◦? The same for bees honeycombs’, many rocks and dried soils configurations. Legend
says that queen Didon, founder of the Carthage’s city (around 814 B-C), was allowed to delimit
the largest area she could circumscribe using strips cut in taurus’ skin: she drew a circle. Those
cases are examples of the economy of means, responding to a metaphysical ideal of simplicity.

At the end of the 17th century, Newton (1643–1727) and Leibniz (1646–1716) developed inde-
pendently from each other, the elements of infinitesimal calculus, allowing in particular, func-
tion’s extrema calculations. At the 18th century, three Swiss mathematicians, the brothers Jacques
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(1654–1705) and Jean Bernoulli (1667–1748), Leonhard Euler (1707–1783) who was Jacques’s
student, and the French mathematician Joseph-Louis Lagrange (1736–1813) used it to build a
new domain of mathematics dedicated to the research of functional’s extrema: the variational
calculus.

Soon, practical concerns underlying the calculus of variations, created polemical philosophical
and metaphysical discussions. In 1710, Leibniz developed the idea that the world had been cre-
ated as the best of all thinkable world in Essays on the Goodness of God, the Freedom of Man
and the Origin of Evil. Certainly, the creation has been flawed in so far as evil exists in the world,
but this does not prevent anybody from considering that there is an almighty Creator, omniscient
and infinitely good. God is to be the smartest and most powerful, it follows that our world is
the best of all possible worlds: the grace of God and the kingdom of Nature are one and the
same. Voltaire (1694–1778) used all the derision he mastered in Candide, published in 1758 to
attack another great scholar of the time, Pierre-Louis Moreau de Maupertuis (1698–1759), with
whom he had few complaints. Appointed President of the new Prussian Academy of Sciences by
Frederick II (1712–1786) (Voltaire refused before this responsibility), to celebrate his starting in
Berlin in 1746, Maupertuis had published the laws of motion and rest, deduced from a metaphys-
ical principle, which was derivated from the least action principle. According to Maupertuis, this
universal axiom is able to describe and explain all physical phenomena. Quite in the spirit of
Leibniz, he postulated that the Nature had ruled the world with excellence, in an optimal way,
and that God, as a “good” father and manager had ensured the profitability and efficiency of their
businesses. Accordingly, he established that the Nature proceeded always with the maximal pos-
sible economy. Leibniz’s pre-established harmony could only please Frederick II, known for his
sense of savings. Maupertuis stated his metaphysical principle in the following way: “If a change
occurs in nature, the necessary amount of action to accomplish it, must be the smallest possible”.
Leibniz had already defined the mechanical action as m · v · s, where m, v, s, are respectively the
mass, velocity and position; this quantity having the same dimensions as the product of energy
m · v2 with time t. There remained, however, with mean of variational calculus to consolidate
mathematically the principle of least action. As said Maupertuis: “My only crime was to have
discovered a principle that made some noise”. Maupertuis did not have the competences to build
a stronger mathematical theory for that, but the presence in the Berlin Academy of Leonhard
Euler foreshadowed fruitful cooperation. Euler was a master in the calculus of variations and he
wrote the first treaty, where he showed that the least action principle was able to describe the
motion of a point mass in a central field, for example trajectory of a planet around the sun. In the
early 1750s, Maupertuis was involved in a violent controversy: his accusers, among whom there
was Voltaire, reproached him the validity of his argument and contested the paternity of the least
action principle. We know now that Leibnitz was the first to have formulated and explained this
principle in several letters. However, Euler created the corresponding mathematical structure,
which served as a model for all the principles of variation subsequently incurred. From the vari-
ational principle follows a set of differential equations named Euler-Lagrange’s equations. The
least action principles, and those of virtual work and powers, are nowadays the most important
mathematical tools to formulate elegantly and under invariant form the fundamental equations in
physical and engineering sciences. Richard Feynman (1918-1988) showed with the path integral
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formalism that the least action principle in classical mechanics is not a first principle, but a de-
ductible result from quantum principles at the semi-classical limit, ie when the Planck’s constant
h → 0 [10, 31]. This helped to build other field theories, such as electroweak theory (which
unifies weak and electromagnetic interaction), or quantum chromodynamics (strong interactions
between quarks), and to find new particles through the system symmetries. Since the 17th cen-
tury, theoretical physics paradigm has been based on this approach and from philosophical and
metaphysical point of view, it has needed a mathematical approach which has been based on
variational calculus.

Classical variational calculus is devoted to functionals applied to functions defined fromRn toR.
One develops in this article a new mathematical tool, the complex variational calculus which is
based on the definition of complex valued function extrema and the complex (min, +)-analysis
introduced in [13,25]. This gives a complex analytical mechanics with complex Euler-Lagrange
and Hamilton-Jacobi equations. This complex (min, +)-analysis [13, 14] can be considered as
a generalization for functions defined from Cn to C of the real (min, +)-analysis previously
defined and developed in several articles and books [11,12,23,24,26].

One reminds in section (2) the basis of (min, +)-analysis and introduces the (min, +) Path In-
tegral. In section (3) the minimum of a complex valued function is defined and one explores
the variational calculus for functionals of such functions, yielding thus to complex Hamilton-
Jacobi equations. Those results are developed in section (4) to Lagrangian densities in order to
derive a generalization of the Euler-Lagrange equations. We end with application of the complex
variational calculation to Born-Infeld nonlinear theory of electromagnetism in section (5).

2 (min, +) FRAMEWORK

One presents briefly in this section (min, +)-analysis and explains why it is a powerful tool
which permits to treat nonlinear problems.

2.1 Non-linear analysis with (min, +)

(min, +)-analysis takes it roots from the shortest path research in a finite graph [11,12,24]. First
authors, M. Gondran et al. [24] have shown that the optimality equation to determine the shortest
path is a linear equation with fixed-point solution in a particular algebraic structure: the dioid
Rmin = (R∪{+∞}, min, +) which is an idempotent semi-ring different from real numbers field
(R, +, ×) [24, 27, 35]. One has just to replace the usual addition + with min operator, and the
product × with +.

They have demonstrated that the classical resolution methods of linear algebra on the real num-
bers field can be re-written into this dioid Rmin yielding to computation algorithms in order to
find the shortest path. In the same spirit, if one uses the dioidRmax,min = (R∪{+∞}, max, min),
it is possible to solve other problems such as to find maximal capacity path in a graph. Almost
all usual concepts used in analysis for R can be transfered and studied in dioids, in particu-
lar, in Rmin, such as eigenvectors and eigenvalues calculations, linear dependence, determinants
computations.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Remark 1. In the Rmin = (R ∪ {+∞}, min, +) dioid, the neutral elements of min and +
operators are respectively +∞ and 0. The ≥(min,+) operator in the dioid corresponds then to
the usual ≤ defined in the field of real numbers (R, +, ×).

When one tries to find the shortest path in a continuous space, optimality equation given by the
the classical variational calculus is the well-known Hamilton-Jacobi equation which expresses

mathematically the Least Action Principle (LAP). The action S(x, t) has to verify⎧⎪⎨⎪⎩
∂S(x, t)

∂t
+ 1

2m
(∇S(x, t))2 + V (x, t) = 0, ∀ (x, t) ∈ Rn × R+,

S(x, 0) = S0(x) ∀x ∈ Rn .

(2.1)

It is a nonlinear partial differential equation on the real numbers field (R, +, ×). Maslov et
al. [27, 35] have shown that this equation is linear in the dioid Rmin = (R ∪ {+∞}, min, +):
thus, if S1(x, t) et S2(x, t) are solutions of Hamilton-Jacobi equation (2.1), then min{λ+S1(x, t),

μ + S2(x, t)} for all λ, μ ∈ R, is a solution too of the same equation (2.1).

After this statement, Maslov and Gondran [24, 27, 35] have introduced the so-called (min, +)-
analysis. This one consists to replace in the scalar product definition of two real-valued functions

f and g defined on a domain X , the real number field (R, +, ×) with the (min, +) dioid (R ∪
{+∞}, min, +). The classical scalar product 〈 f, g〉 = ∫x∈X f (x) · g(x) · dx becomes then the
(min, +) scalar product [11]

〈 f, g〉(min,+) = inf
x∈X

{
f (x) + g(x)

}
.

One reminds below the demonstration that it is a scalar product within the (min, +) dioid is
straightforward [23].

• Symmetry

Obviously, 〈 f, g〉(min,+) = 〈g, f 〉(min,+).

• Positive-definiteness

According to Remark (1), +∞ is the neutral element of the min operator, thus, if
〈 f, f 〉(min,+) = +∞, then f (x) = +∞ for all x ∈ X . Furthermore, since ≥(min,+) in
the dioid corresponds to ≤ in the field of real numbers, and all functions are bounded by

+∞, one has 〈 f, f 〉(min,+) ≥(min,+) +∞.

• Bilinearity

One has to show that 〈 f, g〉(min,+) is distributive according to min, which means

〈 f, min{g1, g2)〉(min,+) = min{〈 f, g1〉(min,+), 〈 f, g2〉(min,+)), and linear according to the
addition of a scalar λ: 〈 f (x), λ + g(x)〉(min,+) = λ + 〈 f, g〉(min,+). The linearity is obvi-
ous since infx∈X { f (x) +λ + g(x)} = λ + infx∈X { f (x) + g(x)}. Distributivity is obtained

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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in two steps. One has first to prove this equality with mean of two inequalities. We start

first with the simple relations

〈 f, g1〉(min,+) � f (x) + g1(x), and 〈 f, g2〉(min,+) � f (x) + g2(x), ∀x .

This gives min{〈 f, g1〉(min,+), 〈 f, g2〉(min,+)} � min{ f (x) + g1(x), f (x) + g2(x)} ∀x .

And since

min{ f (x) + g1(x), f (x) + g2(x)} = f (x) + min{g1(x), g2(x)},
one has min{〈 f, g1〉(min,+), 〈 f, g2〉(min,+)} � f (x) + min{g1(x), g2(x)} ∀x , which yields
to the inequality

min{〈 f, g1〉(min,+), 〈 f, g2〉(min,+)} � 〈 f, min{g1, g2}〉(min,+). (2.2)

In a second step, one can write

〈 f, min{g1, g2}〉(min,+) � f (x) + min{g1(x), g2(x)} � f (x) + g1(x) ∀x,

which becomes

〈 f, min{g1, g2}〉(min,+) � 〈 f, g1〉(min,+). (2.3)

and in the same manner

〈 f, min{g1, g2}〉(min,+) � f (x) + min{g1(x), g2(x)} � f (x) + g2(x) ∀x,

giving now
〈 f, min{g1, g2}〉(min,+) � 〈 f, g2〉(min,+), (2.4)

and then from (2.3) and (2.4)

〈 f, min{g1, g2}〉(min,+) � min{〈 f, g1〉(min,+), 〈 f, g2〉(min,+)}. (2.5)

From relations (2.2) and (2.5), one deduces finally the equality and thus the distributivity.

With this (min, +) scalar product, one obtains a distribution-like theory: the operator is linear
and continuous according the dioid structure (R ∪ {+∞}, min, +), nonlinear and continuous
according to the classical structure (R, +, ×). The nonlinear distribution δ

(min,+)
defined on Rn

as
δ(min,+)(x) = {0 if x = 0, +∞ else}

is similar in (min, +) analysis to the classical Dirac distribution. Then, one has

〈δ(min,+), f 〉(min,+) = min
x∈X

{δ(min,+)(x) + f (x)} = min{ f (0), +∞} = f (0).

This permits to define a distribution theory which is continuously nonlinear in the field of real

numbers, but which is linear in the dioid structure. Therefore it is interesting to study anlog re-
sults developed in Hilbert spaces functional analysis such as Riesz theorems, Fourier transforms,
spectral analysis, measure theory [24,35].

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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For example in (min, +)-analysis , the Legendre-Fenchel transform is similar to the Fourier

transform in the real field [24]. It is defined as

f̂ (r) = min
x∈Rn

{ f (x) − r · x}.
It corresponds to the Fourier transform when one uses lower semi-continuous convex functions

instead of L2 (Rn) ones. This transform is very important in physics since it permits to pass
from Lagrangian to Hamiltonian and conversely, from microcospic scales to macroscopic ones in
statistical physics, and is the keystone mathematical tool for fractal and multifractal analysis [23,

26]. Main property is the possibility of passage from macroscopic scales to microscopic ones,
and this can be expressed through the Stationnary Phase Approximation which uses the min
operator [31] ∫

X
ε f (x) dx  εinfx∈X { f (x)} when ε → 0+.

2.2 (min, +) path integral, Hamilton-Jacobi and Euler-Lagrange actions

One can show that (min, +)-analysis has a great importance in both classical and quantum
physics. It exists indeed in classical mechanics an analog of the Feynman path integral in
(min, +)-analysis, the so-called (min, +) path integral, which relies Hamilton-Jacobi action

S(x, t) to classical Euler-Lagrange action Scl(x, t ; x0) through the definition given below.

Definition 1.
S(x, t) = min

x0
{S0 (x0) + Scl(x, t ; x0)} (2.6)

where the minimum is computed on all initial positions x0 and S0(x) is Hamilton-Jacobi action

at initial time.

This action S is thus an integral in (min, +)-analysis and permits to get a better comprehension
of the Least Action Principle.

Let’s remind that Hamilton-Jacobi and Euler-Lagrange actions are solutions of problems with

different boundary conditions

• the Euler-Lagrange action (or classical action) Scl(x, t ; x0), linking the initial position x0

and its position x at time t,

• the Hamilton-Jacobi action S(x, t), which relates a family of particles of initial action
S0(x) to their various positions x at time t.

Remark 2. While the Euler-Lagrange case entails an unknown initial velocity, the Hamilton-
Jacobi case implies an unknown initial position.

If L(x, ẋ, t) is the Lagrangian of the system, when the two positions x0 and x are given, the
Euler-Lagrange action Scl(x, t ; x0) is the function defined by

Scl(x, t ; x0) = min
u(s),0≤s≤t

{∫ t

0
L(x(s), u(s), s)ds

}
, (2.7)

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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where the minimum (or more generally an extremum) is taken on the velocity u(s) which is the

control variable, s ∈ [0, t ], with the state x(s) given by the equations⎧⎪⎨⎪⎩
dx (s)

ds
= u(s) for s ∈ [0, t ] ,

x(0) = x0.

(2.8)

This is the principle of least action defined by Euler [8] in 1744 and Lagrange [18] in 1755.

The solution (̃u(s), x̃(s)) of (2.7), if the Lagrangian L(x, ẋ, t) is twice differentiable, and satisfies
the Euler-Lagrange equations on the interval [0, t ]⎧⎪⎨⎪⎩

d

ds

∂L

∂ẋ
(x(s), ẋ(s), s) − ∂L

∂x
(x(s), ẋ(s), s) = 0 for s ∈ [0, t ] ,

x(0) = x0.

(2.9)

This is the principle of least action defined by Euler [8] in 1744 and Lagrange [18] in 1755.

The knowledge of the velocity at each time s (0 ≤ s ≤ t ) requires the resolution of the Euler-
Lagrange equations (2.9) on the whole trajectory as illustrated in Figure 1. Let’s give the example
of a non-relativistic particle in a linear potential field V (x) = −K · x. Its Lagrangian becomes

L(x, ẋ, t) = 1
2 mẋ2 + K · x, and the initial velocity is equal to ṽ0 = x−x0

t − t
2m K. Then, ṽ0

depends on the position x of the particle at the final time t .

Figure 1: Illustration of the classical Euler-Lagrange equations boundaries and initial conditions
for different trajectories x(s), s ∈ [0, t ] between initial position (x0, 0) and final one (x, t), x̃(s)

being the optimal trajectory with initial velocity ṽ0. In the case of linear potential field, one gets
ṽ0 = x−x0

t − t
2m K.

Equation (2.7) seems to show that, among the trajectories that can reach (x, t ) from the initial
position x0 as illustrated in figure (2), the principle of least action allows to choose the velocity

at each time. In reality, the principle of least action used in this equation does not choose the
velocity at each time s between 0 and t , but only when the particle arrives at x at time t .

This dependence of the “final causes” is general. This is Poincaré’s main criticism of the princi-
ple of least action “This molecule seems to know the point to which we want to take it, to foresee

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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the time it will take to reach it by such a path, and then to know how to choose the most convenient

path.” One must conclude that, without knowing the initial velocity, the Euler-Lagrange action
answers a problem posed by an observer “What would be the velocity of the particle at the initial
time to attained x at time t?”. The resolution of this problem implies that the observer solves the

Euler-Lagrange equations (2.9) after the observation of x at time t . This is an a posteriori point
of view.

Figure 2: Illustration of the Hamilton-Jacobi equations boundaries and initial conditions for
different classical trajectories x̃(s), s ∈ [0, t ] between different initial positions (xi

0, 0) and
(x, t) with different initial velocities ṽi

0. In the case of linear potential field, one has directly
ṽ0 = x−x0

t − t
2m K.

The Hamiton-Jacobi action will overcome this a priori lack of knowledge of the initial velocity

in the Euler-Lagrange action. Indeed, at the initial time, the Hamilton-Jacobi action S0(x) is
known. The knowledge of this initial action S0(x) involves the knowledge of the velocity field at
the initial time that satisfies v0(x) = ∇S0(x)

m . The Hamilton-Jacobi action S(x, t) at x and time t

is then the function defined by

S(x, t) = min
x0;u(s),0≤s≤t

{
S0 (x0) +

∫ t

0
L(x(s), u(s), s)ds

}
. (2.10)

where the minimum is taken on all initial positions x0 and on the controls u(s), s ∈ [0, t ], with
the state x(s) given by the equations (2.8) as showed on Figure 2. This Hamilton-Jacobi action

with its initial solution S0(x) is well known in the mathematical textbooks [9] for optimal control
problems, but is ignored in physical ones [15, 19, 20], where there is no mention of the initial
condition S0(x). It is often confused in the textbooks with the so-called principal function of
Hamilton.

2.3 Physical interpretation

The introduction of the Hamilton-Jacobi action highlights the importance of the initial action
S0 (x), while texbooks do not well differentiate these two actions.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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The initial condition S0(x) is mathematically necessary to obtain the general solution to the

Hamilton-Jacobi equations (2.1) and (2.2). Physically, it is the condition that describes the prepa-
ration of the particles. We will see that this initial condition is the key to the least action principle
understanding.

Nothing that because S0(x0) does not play a role in (2.10) for the minimization on u(s), we

obtain equation (2.7) between the Hamilton-Jacobi action and Euler-Lagrange action

S(x, t) = min
x0

{S0 (x0) + Scl(x, t ; x0)}. (2.11)

It is an equation that generalizes the Hopf-Lax and Lax-Oleinik formula [9],

S(x, t) = min
x0

{
S0 (x0) + m

(x − x0)
2

2t

}
,

which corresponds to the particular case of the free particle where the Euler-Lagrange action
is equal to m (x−x0 )2

2t . For the Lagrangian L(x, ẋ, t) = 1
2 mẋ2 − V (x, t), one deduces that the

velocity of a non-relativistic classical particle in a potential field is given for each point (x,t) by

v (x,t) = ∇S (x,t)

m
. (2.12)

where S (x,t) is the Hamilton-Jacobi action, solution to the Hamilton-Jacobi equations (2.1).

Equation (2.12) shows that the solution S (x,t) of the Hamilton-Jacobi equations yields the ve-
locity field for each point (x, t ) from the velocity field ∇S0(x)

m at initial time. In particular, if at

initial time, one knows the initial position xinit of a particle, its velocity at this time is equal
to ∇S0(xinit )

m . From the solution S (x,t) of the Hamilton-Jacobi equations, one deduces the par-
ticle trajectories with (2.12). The Hamilton-Jacobi action S (x,t) is then a field which “pilots”
the particle. One can understand with equation (2.12) that among the trajectories that can reach

(x, t ) from an unknown initial position and a known initial velocity field, Nature chooses the
initial position and at each time the velocity that yields the minimum (or the extremum) of the
Hamilton-Jacobi action. Equations (2.1) and (2.12) confirm this interpretation. They show that

the Hamilton-Jacobi action S(x, t) does not only solve a given problem with a single initial con-
dition

(
x0,

∇S0(x0)
m

)
, but a set of problems with an infinity of initial conditions, all the pairs(

y,
∇S0(y)

m

)
. It answers the following question “If one knows the action (or the velocity field)

at the initial time, can we determine the action (or the velocity field) at each later time?”. This

problem is solved sequentially by the (local) evolution equation (2.1). This is an a priori point
of view. It is the problem solved by Nature with the principle of least action.

(min, +)-analysis can help us now to explain the differences between Hamilton-Jacobi and
Euler-Lagrange actions.

The classical Euler-Lagrange action Scl(x, t ; x0) is the elementary solution to the Hamilton-

Jacobi equations (2.1) in the (min, +)-analysis with the initial condition

S0(x) = δ(min,+)(x − x0) =
{

0 if x = x0,

+∞ otherwise
(2.13)

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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The Hamilton-Jacobi action S(x, t) is then given by the (min, +) path integral (2.11).

3 COMPLEX VARIATIONAL CALCULUS

One introduces for complex valued functions, the definition of a minimum in a first step and
develops variational calculus for functionals applied to such kind of functions in a second step.

3.1 Minimum of a complex valued function

Definition 2. For a complex function f : Cn −→ C, with f (z) ≡ f (x + iy) = P (x, y) +
i Q (x, y) from Cn to C, one defines the min operator if it exists for a closed set A =
{x + iy /x ∈ X ⊂ Rn , y ∈ Y ⊂ Rn} ⊂ Cn with z0 = x0 + iy0 as

z0 = arg min
z∈A

f (z) ∈ arg min
x∈X

max
y∈Y

P (x, y) = arg max
y∈Y

min
x∈X

P (x, y) .

Example 1. Let a ∈ R, and f : C −→ C the function z = x + iy �→ (z − a)2, then f (z) ≡
f (x, y) = (x2 + a2 − y2) + 2i(x y − ay), and⎧⎪⎨⎪⎩

arg min
x∈R

max
y∈R

{x2 + a2 − y2} ≡ (a, 0) = a

arg max
y∈R

min
x∈R

{x2 + a2 − y2} ≡ (a, 0) = a,
(3.14)

which gives the minimum z0 = a.

Remark 3. Therefore (x0, y0) has to be a saddle-point of P (x, y). If it is not unique, the
complex part of inf { f (z) /z ∈ Cn} is a multivalued (set-valued) function.

Definition 3. A function f : Cn −→ C such as f (z) = P(x, y) + i Q(x, y) will be called
(strictly) convex if P (x, y) is (strictly) convex in x and (strictly) concave in y.

Remark 4. If f is an holomorphic function, a necessary condition for z0 to be a minimum of f

is that f ′ (z0) = 0. For such a function, its real part P (x, y) (strictly) convex in x is equivalent
to P (x, y) (strictly) concave in y (Cauchy-Riemann conditions).

Definition 4. For all convex function f : Cn −→ C, one defines its Legendre-Fenchel transform
f̂ : Cn −→ C as

f̂ (p) = min
z∈Cn

{ f (z) − p · z}.

Theorem 1. The complex Legendre-Fenchel transform f̂ (p) of a function f from Cn toC, which
is holomorphic and strictly convex, is an involute and strictly convex transform as well and is
defined by ̂̂f (z) = min

p∈Cn
{ f̂ (p) − p · z} = f (z) .
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Definition 5. Let L : Cn × Cn × R+ → C a functional L (p, q, τ ) holomorphic in both p and

q and derivable in τ , which will be called complex Lagrangian. For fixed (zi , z f ) ∈ Cn × Cn

and t ≥ 0, one defines the complex action functional on the set of admissible functions A ={
w ∈ C2 ([0, t ] ;Cn) / w (0) = zi , w (t) = z f

}
as

J (w) =
∫ t

0
L

(
w (s) ,

dw
ds

(s) , s

)
ds. (3.15)

Thus, the main goal of complex variational calculus is to find out a curve z(·) ∈ A, verifying

J (z) = min
w∈A

J (w) (3.16)

where the min operator is considered in the sense of definition (2).

Theorem 2 (Complex Euler-Lagrange equation). If the function z (·) is an holomorphic solu-
tion of (3.16), then z (·) verifies the equations system

∂L

∂z

(
z (s) ,

dw
ds

(s), s

)
− d

ds

(
∂L

∂q

(
z (s) ,

dw
ds

(s), s

))
= 0 , ∀t ∈ [0, t ]. (3.17)

Proof 1. The demonstration is similar to the classical one if J (z) = min
w∈A

J (w) and if z ∈ B ⊂
A, then J (z) = min

w∈B
J (w). �

Definition 6. One defines the complex action S (z, t) as the complex minimum of the integral

S(z (t) , t) = min
v(τ ),0≤τ≤t

{
S0 (z0) +

∫ t

0
L(z(τ ), v(τ ), τ )dτ

}
(3.18)

where the complex minimum is calculated on all control variables v(τ ), ∀τ ∈ [0, t ]. The state

evolution z(τ ) is given by system’s evolution equation

dz
dt

(τ ) = v (τ ) and z (0) = z0 .

Theorem 3. The complex action S (z, t) verifies the complex Jamilton-Jacobi equations⎧⎪⎨⎪⎩
∂S

∂t
+ H (z, ∇S, t) = 0 ∀ (z, t) ∈ Cn × R+,

S (z, 0) = S0 (z) ∀z ∈ Cn,

(3.19)

where H (z, p, t) is the Legendre-Fenchel of L(z, q, t).

Proof 2. Analogous to the classical variational calculus with the assumption that the action
S (z, t) is holomorphic in z. �
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3.2 Complex Hamilton-Jacobi equations

Let’s write the action as S (x, t) = a (x, t) + ib (x, t) verifying the Hamilton-Jacobi equations
with a (x, t) and b (x, t) from Rn× R+ to R⎧⎪⎨⎪⎩

∂S

∂t
+ 1

2
(∇S)2 = 0 ∀ (x, t) ∈ Rn × R+,

S (x, 0) = S0 (x) ∀x ∈ Rn.

with S0 (x) = a0 (x) + ib0 (x) where a0 and b0 are holomorphic (analytic) functions from
Rn to R.

Those equations are equivalent to the partial derivative equations system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂a

∂t
+ 1

2
(∇a)2 − 1

2
(∇b)2 = 0 ∀ (x, t) ∈ Rn × R+,

∂b

∂t
+ ∇a · ∇b = 0 ∀ (x, t) ∈ Rn × R+,

a (x, 0) = a0 (x) , b (x, 0) = b0 (x) ∀x ∈ Rn .

(3.20)

If a0 (x) is strictly convex, one can show that the solution S (x, t) of this system of equations
(3.20) is equal to

S (x, t) = min
z∈Cn

{
S0 (z) + (z − x)2

2t

}
.

Remark 5. In order to get the solution of those equations, it has been necessary to use complex
variables. This is a general method. One can generalize the resolution of Hamilton-Jacobi equa-
tions for the complex ones. The following theorem gives a generalisation of Hopf-Lax formula.

Theorem 4. The solution S (z, t) of complex Hamilton-Jacobi equations⎧⎪⎨⎪⎩
∂S

∂t
+ H (∇S) = 0, ∀ (z, t) ∈ Cn × R+,

S (z, 0) = S0 (z) ∀z ∈ Cn,

(3.21)

where H and S0 are holomorphic and convex functions, is then equal to

S (z, t) = min
z′∈Cn

{
S0
(
z′)+ t Ĥ

(
z − z′

t

)}
.

where Ĥ is the complex Legendre-Fenchel of H .

4 LAGRANGIAN FIELDS

One develops in this sections a complex analytical mechanics from complex valued Lagrangian
density. For a flat Minkowski space with metric tensor ημν, one introduces usually a Lagrangian
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density L(ϕ, ∂νϕ) depending on the functionnal ϕ(xμ) with xμ = (x0, xi) = (t, x) and its first

derivatives ∂νϕ(xμ) = ∂ϕ(xμ)
∂xν . If one integrates it on the whole space or even on an open set


 = 
̊ ⊂ R3, one gets the usual Lagrangian

L(ϕ(·, t)) =
∫




L(ϕ(·, t), ∂μϕ(·, t))d3x. (4.22)

Let’s consider the field ϕ(xμ) and its lagrangian density as complex valued. On assumes that
L(z, q) is holomorphic in z and q, and strictly convex in q.

One can then define the complex action between t0 and t ≥ t0 by

S(ϕ) =
∫
[t0,t ]

L(ϕ(·, s))ds, (4.23)

which can be written as well as

S(ϕ) =
∫


×[t0,t ]
L(ϕ, ∂μϕ)d4x. (4.24)

One would like to generalize the Least Action Principle to this complex field in order to derive
Euler-Lagrange-like equations. This principle states that system’s physical fields ϕ̃(x, t) corre-
spond to the extrema of the action S.

One considers the action S()ϕε), with ϕε = ϕ̃ + εδϕ, δϕ is an arbitrary field vanishing to 0 on
∂
 the border of the integration volume 
. Action stationnarity for ϕ̃ means[

d

dε
S(ϕε)

]
ε=0

= 0.

After partial integration and using the fact that δϕ ≡ 0 on ∂
, it yields

d

dε
S(ϕε) =

∫
d4x

[
∂

∂ϕ
L(ϕ, ∂μϕ) − ∂μ

∂

∂∂μϕ
L(ϕ, ∂μϕ)

]
ϕ=ϕε

δϕ.

Since δϕ arbitrary in the integration volume, one gets the Euler-Lagrange equations for
complex Lagrangian

∂

∂ϕ
L(ϕ, ∂μϕ) − ∂μ

∂

∂∂μϕ
L(ϕ, ∂μϕ) = 0 in 
×]t0, t [, (4.25)

for which ϕ̃ is the solution.

5 APPLICATIONS TO THE BORN-INFELD THEORY

We present in this section an application of our previous development about complex variational
calculus to the Born-Infeld theory of electromagnetism. One explores here the possibility to re-
place the Faraday tensorF and its Hodge dualF� with a unique complex tensorFC = F+i ·F�.

We show that this replacement coupled with an extension of least action principle to complex-
valued Lagrangian densities, permits to deduce first the Maxwell’s equations, and second to
understand why experiments have never exhibited nonlinear Born-Infeld effects.
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5.1 Tensorial and Lagrangian density formalism in electromagnetism

The answer to the question “What is the right tensor of the electromagnetic field?” seems obvious
since the introduction of the Faraday tensor in 1908 by H. Minkowski [28]. In almost all texbooks

on electromagnetism or relativity [3, 17, 20], one usually uses the Faraday tensor (Fμν) and its
Hodge-dual (F∗

μν) to describe the electromagnetic field (E, B) with

F =

⎛⎜⎜⎜⎝
0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎞⎟⎟⎟⎠ , (5.26)

and

F� =

⎛⎜⎜⎜⎝
0 −Bx −By −Bz

Bx 0 Ez −Ey

By −Ez 0 Ex

Bz Ey −Ex 0

⎞⎟⎟⎟⎠ . (5.27)

We recall that the usual method for obtaining Maxwell’s equations

E = −∇ − ∂A
∂t

and B = ∇ × A, (5.28)

which yields to

∇ · B = 0 and ∇ × E + ∂B
∂t

= 0, (5.29)

is to find the extremum of the action
∫ L d4x according to the potential quadrivector (, A) with

L = −1

4
FμνFμν − jμ Aμ (5.30)

= −1

4
F∗

μνF∗μν − jμAμ

= 1

2
(E2 − B2) − ρ + j · A.

Remark 6. This Lagrangian density uses only the first Lorentz invariant E2 − B2 and not simu-
taneously (E · B)2.

However, one can ask if F and F∗ are the right tensor of the electromagnetic theory. Why two
electromagnetic tensors are not combined into only one as for other fields in physics? From a

fundamental point of view, one can not define the Lagrangian density (5.30) with 1
2

√− det(F)−
jμ Aμ or 1

2

√− det(F∗) − jμ Aμ , since − det(F) = − det(F∗) = (E · B)2 , which is the other
Lorentz’s invariant. Let us note that it is important to obtain the right electromagnetic tensor if
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one wants to combine it with another one such as the metric tensor. This was Born and Infeld’s

main idea, and also one of the research motivations for the B-branes theory.

In this paper, we show that a well-suited candidate for the electromagnetic tensor is the complex
Faraday tensor

FC = F + i ·F∗ =

⎛⎜⎜⎜⎝
0 Fx Fy Fz

−Fx 0 −i Fz i Fy

−Fy i Fz 0 −i Fx

−Fz −i Fy i Fx 0

⎞⎟⎟⎟⎠ (5.31)

which depends only on the complex vector F = E + iB. This vector F has a long history since its

introduction in 1907 by L. Silberstein [32,33]. With mean of Maxwell’s equations, one can write

F = −∂A
∂t

− ∇ + i∇ × A. (5.32)

This tensor is unique and one can associate the following complex-valued Lagrangian density

with the density quadrivector (ρ, j)

LC = 1

2

√− det(FC ) − jμAμ = 1

2
F2 − ρ + j · A, (5.33)

whose real part is the Lagrangian density L (5.30). We note that F2 = (E + iB)2 = (E2 −B2)+
2iE · B which exhibit the Lorentz invariants [17].

One will propose below some new clues that allow to consider FC as the possible right electro-

magnetic tensor.

5.2 Born-Infeld nonlinear equations

While seeking to identify a covariant action in order to build a nonlinear electrodynamics, Born

and Infeld proposed to use a linear combination of the metric tensor gμν = diag(1, −1, −1, −1)

and of the Faraday tensor (Fμν ). It is the following Lagrangian density [2,21,22]

LBI = −k2

2

(√
− det

(
gμν + 1

k
Fμν

)
−√− det(gμν)

)
− ρ + j · A,

(5.34)

where k is a large dimensional parameter. This uses both the two Lorentz’s invariants, as can be
shown on the following equivalent expression

LBI = −k2

⎛⎝√1 − E2 − B2

k2
− (E · B)2

k4
− 1

⎞⎠− ρ + j · A. (5.35)

When k → +∞, one recovers (5.30). This density describes a non-interacting gauge theory but
has not been validated by experiments in order to demonstrate nonlinear classical effects [16].
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However, it still remains a relevant and useful theory for membranes and superstrings theories

[4,30,34].

If we consider that the relevant field-strength tensor in electrodynamics is the complex Faraday
one, the Born-Infeld Lagrangian density should be rewritten by replacing F in (5.34) by FC

LBIC = −k2

2

(√
− det

(
gμν + 1

k
FCμν

)
−√− det(gμν)

)
− ρ + j · A. (5.36)

The calculation leads to

det

(
gμν + 1

k
FCμν

)
= det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − Fx

k
− Fy

k
− Fz

k

Fx

k
−1 i

Fz

k
−i

Fy

k

Fy

k
−i

Fz

k
−1 i

Fx

k

Fz

k
i

Fy

k
−i

Fx

k
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −
(

1 − 1

k2
F2
)2

. (5.37)

We therefore obtain

LBI C = −k2

2

[(
1 − 1

k2
F2
)

− 1

]
− ρ + j · A = 1

2
F2 − ρ + j · A. (5.38)

Let’s now apply the complex variational calculus that we have developed above complex Euler-

Lagrange equations (5.39) with ϕ = (, A)

∂

∂ϕ
LBI C (ϕ, ∂μϕ) − ∂μ

∂

∂∂μϕ
LBI C (ϕ, ∂μϕ) = 0. (5.39)

Using the expression of F in (5.32), the set of equations (5.39) yields directly to an equivalent

form of Maxwell’s equations F

∇ · F = ρ and ∇ × F − i
∂F
∂t

= ij. (5.40)

This shows first that the right complex Born-Infeld Lagrangian has to be the complex Faraday
one. Second, it shows that the complex Euler-Lagrange equations (Maxwell’s equations) ob-

tained from it yield to Maxwell’s equations which are linear, and will thus not produce nonlinear
effects, which concurs with the experiments [16]. It means that there are no nonlinear effects,
excepted in the quantum treatment of electrodynamics. The difference between the Born-Infeld

complex approach and the one presented here is due to the fact that the real part of LBI C is
different from the LBI one. Indeed, the real part of the square root of a complex number is not
equal to the square root of its real part.
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6 CONCLUSION

One has proposed a new mathematical tool, the so-called complex (min, +)-analysis which is a
generalization of the real approach one. This permits to develop a well-defined complex varia-

tional calculus, to generalize Hamilton-Jacobi and Euler-Lagrange equations to the complex case.
Through this generalization and from a complex Lagrangian density, we have derived Maxwell’s
equations from the complex Faraday tensor FC . The analysis of the Born-Infeld theory through

the complex Faraday tensor explains why experiments have never demonstrated nonlinear Born-
Infeld effects and then confirms the Faraday complex tensor as a better candidate to represent
the electromagnetic field. The complex vector F = E + iB has often been viewed as a possible

wave function of the photon [1]. It is a pragmatic way to consider the existence of this wave
function, as stated by P.A.M. Dirac in 1958 [29] “The essential point is the association of each
of the translational states of the photon with one of the wave functions of ordinary wave optics”.

The complex Lagrangian density proposed here is therefore an explicit functional of the wave
function.

In order to unify General Relativity and Electrodynamics Theories, Einstein also defined a com-
plex tensor which linked metric and electromagnetic tensors [7]. We have proved with equation

(5.37) that the complex Faraday tensor is linked to the Minkowski metric tensor. One of the main
challenge will be to define a covariant action by combining the metric tensor and a complex
Faraday tensor to a curved space.
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RESUMO. Uma nova ferramenta matemática é desenvolvida, a análise complexa (min,+),

que permite definir um novo cálculo variacional, análogo ao cálculo clássico (equações de

Euler-Lagrange e Hamilton-Jacobi), que é adequado para funções definidas de Cn em C.

Aplicamos este cálculo variacional complexo à teoria de Born-Infeld de eletromagnetismo, e

mostramos porque efeitos não lineares não são exibidos.

Palavras-chave: Cálculo Variacional, Lagrangeano, Hamiltoniano, Ação, Equações de

Euler-Lagrange e Hamilton-Jacobi, análise complexa (min, +), Equações de Maxwell,
Teoria de Born-Infeld.
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