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ABSTRACT. In this paper, we use the new fractional complex transform and the sub-equation method
to study the nonlinear fractional differential equations and find the exact solutions. These solitary wave
solutions demonstrate the fact that solutions to the perturbed nonlinear Schrodinger equation with power
law nonlinearity model can exhibit a variety of behaviors.
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1 INTRODUCTION

With the availability of symbolic computation packages like Maple or Mathematica, direct
searching for exact solutions of nonlinear systems of partial differential equations (PDEs) has
become more and more attractive. Having exact solutions of nonlinear systems of PDEs makes it
possible to study nonlinear physical phenomena thoroughly and facilitates testing the numerical

solvers as well as aiding the stability analysis of solutions. Wide classes of analytical methods
have been proposed for solving the fractional differential equations, such as the fractional sub-
equation method [1–3], the first integral method [4], and the (G’/G)-expansion method [5, 6],

which can be used to construct the exact solutions for some time and space fractional differen-
tial equations. Based on these methods, a variety of fractional differential equations have been
investigated and solved. In this present paper we applied the new extension of sub-equation

method for finding new exact solitary wave solutions for time-fractional Burgers equation in the
following form,

∂αu

∂tα
+ εu

∂q

∂x
− v

∂2u

∂x2
= 0, 0 < α ≤ 1, t > 0. (1.1)

Recently, a new modification of Riemann-Liouville derivative is proposed by Jumarie [7]:

Da
x f (x) = 1

� (1 − α)

d

dx

x∫
0

(x − ε)−α ( f (ε)− f (0)) dε, 0 < α < 1
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226 NEW EXTENSION FOR SUB EQUATION METHOD

and gave some basic fractional calculus formulae, for example, formulae (4–12) and (4–13) in

[7]:
Dα

x (u (x) v (x)) = v (x) Dα
x (u (x))+ u (x) Dα

x (v (x)) ,

Dα
x ( f (u (x))) = f ′

u (u) Dα
x (u (x)) = Dα

x f (u)
(

u
′
x

)α
, (1.2)

The last formula – has been applied to solve the exact solutions to some nonlinear fractional
order differential equations. If this formula were true, then we could take the transformation

ξ = x − ktα

� (1 + α)

and reduce the partial derivative

∂αU (x, t)

∂tα
to U ′ (ξ ) .

Therefore the corresponding fractional differential equations become the ordinary differential
equations which are easy to study. But we must point out that Jumarie’s basic formulae and are

not correct, and therefore the corresponding results on differential equations are not true [8].
Fractional derivative is as old as calculus. The most popular definitions are [9–12]:

(i) Riemann-Liouville definition: If n is a positive integer and α ∈ [n − 1, n) the αth deriva-
tive of f is given by

Dα
a f (t) = 1

� (n − α)

dn

dtn

t∫
a

f (x)

(t − x)α−n+1
dx

(ii) Caputo Definition. For α ∈ [n − 1, n) the α derivative of f is

Dα
a f (t) = 1

� (n − α)

t∫
a

f n (x)

(t − x)α−n+1 dx .

Now, all definitions are attempted to satisfy the usual properties of the standard derivative. The

only property inherited by all definitions of fractional derivative is the linearity property. How-
ever, the following are the setbacks of one definition or another:

(i) The Riemann-Liouville derivative does not satisfy Dα
a (1) = 0

(
Dα

a (1)
) = 0 for the Ca-

puto derivative), if α is not a natural number.

(ii) All fractional derivatives do not satisfy the known product rule

Dα
a ( f g) = f Dα

a (g)+ g Dα
a ( f )

(iii) All fractional derivatives do not satisfy the known product rule

Dα
a

(
f

g

)
= f Dα

a (g)− g Dα
a ( f )

g2

Tend. Mat. Apl. Comput., 18, N. 2 (2017)



�

�

“main” — 2017/9/5 — 13:06 — page 227 — #3
�

�

�

�

�

�

NEIRAMEH 227

(iv) All fractional derivatives do not satisfy the known quotient rule:

Dα
a ( f og) (t) = f α (g (t)) gα (t) .

(v) All fractional derivatives do not satisfy the chain rule: DαDβ f = Dα+β f in general.

(vi) Caputo definition assumes that the function f is differentiable. Authors introduced a new
definition of fractional derivative as follows [16]:

For α ∈ [0, 1) , and f : [0, ∞) → R let

Tα ( f ) (t) = lim
ξ→0

f
(
t + ξ t1−α) − f (t)

ξ
.

For t > 0, α ∈ (0, 1). Tα is called the conformable fractional derivative of f of order α
[17–18].

Definition 1.1. Let f α (t) stands for Tα ( f ) (t). Hence

f α (t) = lim
ξ→0

f
(
t + ξ t1−α) − f (t)

ξ
.

If f is α-differentiable in some (0, a), a > 0, and lim
t→0+ f α (t) exists, then by definition

f α (0) = lim
t→0+ f α (t) .

We should remark that Tα (tμ) = μtμ−α. Further, this definition coincides with the classical
definitions of R-L and of Caputo on polynomials (up to a constant multiple). One can easily
show that Tα satisfies all the properties in the theorem [15–16].

Theorem 1.1. Let α ∈ [0, 1) and f, g be α-differentiable at a point t . Then:

(i) Tα (a f + bg) = aTα ( f )+ bTα (g) , for all a, b ∈ R;

(ii) Tα (tμ) = μtμ−α, for all μ ∈ R;

(iii) Tα ( f g) = f Tα (g)+ gTα ( f );

(iv) Tα

(
f

g

)
= f Tα (g)− gTα ( f )

g2
.

If, in addition, f is differentiable, then Tα ( f ) (t) = t1−α d f

dt
.

Theorem 1.2. Let f : [0, ∞) → R be a function such that f is differentiable and also differ-
entiable. Let g be a function defined in the range of f and also differentiable; then, one has the
following rule [17]:

Tα ( f og) (t) = t1−αg′ (t) f ′ (g (t)) .
The above rule is referred to as Atangana beta-rule. We will present new derivative for some
special functions

Tend. Mat. Apl. Comput., 18, N. 2 (2017)



�

�

“main” — 2017/9/5 — 13:06 — page 228 — #4
�

�

�

�

�

�

228 NEW EXTENSION FOR SUB EQUATION METHOD

(i) Tα (ecx ) = cx1−αecx , c ∈ R.

(ii) Tα (sin bx) = bx1−α cos bx, b ∈ R.

(iii) Tα (cos bx) = −bx1−α sin bx, b ∈ R.

(iv) Tα
(

1
α xα

)
= 1.

However, it is worth noting the following fractional derivatives of certain functions:

(i) Tα
(

e
1
α

tα
)

= e
1
α

t .

(ii) Tα
(

sin 1
α t

)
= cos 1

α t .

(iii) Tα
(

cos 1
α t

)
= − sin 1

α t .

Definition 1.2. (Fractional Integral). Let a ≥ 0 and t ≥ a. Also, let f be a function defined on

(a, t ] and α ∈ f . Then the α-fractional integral of f is defined by,

Iαa ( f ) (t) =
t∫

a

f (x)

x1−α dx

if the Riemann improper integral exists. It is interesting to observe that the α-fractional derivative
[15 − 16].
Theorem 1.3. (Inverse property). Let a ≥ 0, and α ∈ (0, 1). Also, let f be a continuous function
such that Iαa f exists. Then

Tα
(
Iαa f

)
(t) = f (t) , for t ≥ a.

In this paper, we obtain the exact solution of the fractional perturbed nonlinear Schrodinger
equation with power law nonlinearity by means of the sub-equation method. The sub-equation
method is a powerful solution method for the computation of exact traveling wave solutions.

This method is one of the most direct and effective algebraic methods for finding exact solutions
of nonlinear fractional partial differential equations (FPDEs). The method is based on the homo-
geneous balance principle and the Jumarie’s modified Riemann-Liouville derivative of fractional

order.

2 METHOD APPLIED

Suppose that nonlinear fractional partial differential equations, say, in three independent variable

x, y and t is given by

G
(

u, Dα
t u, Dα

x u, Dα
y u, D2α

t u, D2α
x , Dα

t Dα
x u, . . .

)
= 0, 0 < α ≤ 1. (2.1)

where Dα
x u, Dα

y u and Dα
t u are comformable fractional derivatives of u, u (x, y, t) is an unknown

function, G is a polynomial in u and its various partial derivatives, in which the highest order
derivatives and nonlinear terms are involved. This method consists of the following steps:

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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Step 2.1 Using a wave transformation

u = u(ξ ), ξ = k
xα

α
+ l

yα

α
+ c

tα

α
, (2.2)

Where k and c are real constants. This enables us to use the following changes:

Dα
t (.) = c

d

dξ
, Dα

x (.) = k
d

dξ
, Dα

y (.) = l
d

dξ
, D2α

x (.) = k2 d2

dξ 2
.

Under the transformation (2.2), Eq. (2.1) becomes an ordinary differential equation

N(u, u′, u′′, u′′′, . . .) = 0, (2.3)

where u′ = du
dξ .

Step 2.2 We assume that the solution of Eq. (2.3) is of the form

u(ξ ) =
m∑

i=0

ai (m + F(ξ ))i +
2m∑

i=m+1

ai (m + F(ξ ))m−i , (2.4)

where ai(i = 1, 2, . . . , n) are real constants to be determined later. F(ξ ) expresses the solution

of the auxiliary ordinary differential equation

F ′ (ξ ) = γ (t) F2 (ξ )+ β (t) F (ξ )+ α (t) , (2.5)

Eq. (2.5) admits the following solutions:

F(ξ ) =
{

−√−b tanh(
√−bξ ), b < 0 (9a)

−√−b coth(
√−bξ ), b < 0 (9b)

F(ξ ) =
{ √

b tan(
√

bξ ), b > 0 (9c)

−√
b cot(

√
bξ ), b > 0 (9d)

F(ξ ) = − 1
ξ+ξ0 , ξ0 = const, b = 0 (9e)

(2.6)

Integer m in (2.4) can be determined by considering homogeneous balance between the non-
linear terms and the highest derivatives of u(ξ )in Eq. (2.3) polynomial in F(ξ ), equating each

coefficient of the polynomial to zero yields a set of algebraic equations for ai , k, c.

Step 2.3 Solving the algebraic equations obtained in Step 3, and substituting the results into
(2.3), then we obtain the exact traveling wave solutions for Eq. (2.1).

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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3 APPLICATION TO THE TIME-FRACTIONAL BURGERS EQUATAION

Using a wave transformation

u(x, t) = U (ξ ), ξ = kx − ctα

α
, (3.1)

by substituting Eq. (3.1), into Eq. (1.1) is reduced into an ODE

−cU ′ + kεUU ′ − k2vU ′′ = 0,

by integrating once, we find

ξ0 − cU + 1

2
kεU 2 − k2vU ′ = 0. (3.2)

Balancing U ′ with U 2in Eq. (3.2) give

m + 1 = 2m ⇔ m = 1.

We then assume that Eq. (3.2) has the following formal solution:

U (ξ ) = a0 + a1 (h + F)+ a2 (h + F)−1 , (3.3)

by considering the F (ξ )+ h = 	 in Eq. (3.3) we have

U (ξ ) = a0 + a1	 + a2	
−1, (3.4)

and
	 ′ = γ	2 + (β − 2γ h)	 + γ h2 − βh + α. (3.5)

Substituting Eqs. (3.4) − (3.5) into Eq. (3.2) and collecting all terms with the same order of

ψ j together, we convert the left-hand side of Eq. (3.2) into a polynomial in F j . Setting each
coefficient of each polynomial to zero, we derive a set of algebraic equations for a0, a1, a2 and
h. By solving these algebraic equations we have

a1 = 2kvγ

ε

a0 = −c − k2vβ + 2k2vγ h

kε

a2 = −2kv(α + γ h2 − βh)

ε

h = 1

2

β

γ
,

c =
√

2ξ0kε − 16k4v2γ α + 4k4v2β2

So from (3.1) we have solitary wave solutions of Eq. (1.1) as follows.

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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If b < 0

u1(x, t) = −c−k2vβ+2k2vγ h
kε +

2kvγ
ε

(
1
2
β
γ

− √−b tanh

[√−b

(
kx −

√
2ξ0k−16k4v2γ α+4k4v2β2tα

α

)])
−

2kv(α+γ h2−βh)
ε

(
1
2
β
γ

− √−b tanh

[√−b

(
kx −

√
2ξ0k−16k4v2γ α+4k4v2β2tα

α

)])−1

,

and

u2(x, t) = −c−k2vβ+2k2vγ h
kε +

2kvγ
ε

(
1
2
β
γ − √−b coth

[√−b

(
kx −

√
2ξ0k−16k4v2γ α+4k4v2β2tα

α

)])
−

2kv(α+γ h2−βh)
ε

(
1
2
β
γ − √−b coth

[√−b

(
kx −

√
2ξ0k−16k4v2γ α+4k4v2β2tα

α

)])−1

.

If b > 0

u3(x, t) = −c−k2vβ+2k2vγ h
kε +

2kvγ
ε

(
1
2
β
γ

√
b tan

[√
b

(
kx −

√
2ξ0k−16k4v2γ α+4k4v2β2tα

α

)])
−

2kv(α+γ h2−βh)
ε

(
1
2
β
γ

+ √
b tan

[√
b

(
kx −

√
2ξ0k−16k4v2γ α+4k4v2β2tα

α

)])−1

,

and

u4(x, t) = −c−k2vβ+2k2vγ h
kε +

2kvγ
ε

(
1
2
β
γ

− √
b cot

[√
b

(
kx −

√
2ξ0k−16k4v2γ α+4k4v2β2tα

α

)])
−

2kv(α+γ h2−βh)
ε

(
1
2
β
γ

− √
b cot

[√
b

(
kx −

√
2ξ0k−16k4v2γ α+4k4v2β2tα

α

)])−1

.

If b = 0 we have solution of Eq. (1.1) as follow

u5(x, t) = −c−k2vβ+2k2vγ h
kε +

2kvγ
ε

(
1
2
β
γ

− α

kxα−
√

2ξ0kε−16k4v2γ α+4k4v2β2tα+ξ0α

)
−

2kv(α+γ h2−βh)
ε

(
1
2
β
γ

− α

kxα−
√

2ξ0kε−16k4v2γ α+4k4v2β2tα+ξ0α

)−1

.

4 CONCLUSION

Now, we briefly summarize the results in this paper. Firstly, the fractional complex transform is
extremely simple but effective for solving nonlinear fractional differential equations. Secondly,
the sub-equation method for nonlinear fractional differential equations with fractional complex

transform has its own advantages: direct, succinct, and basic; and it can be used for many other
nonlinear equations. Thirdly, to our knowledge, the solutions obtained in this paper have not been
reported in the literature so far.
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RESUMO. Neste artigo usamos uma nova transformação fracional complexa e o método da

sub-equação para estudar equações diferenciais não lineares e encontrar soluções exatas. As

soluções de onda encontradas mostram que as soluções da equação não linear de Schrodinger

perturbada com um modelo não linear de lei das potências pode apresentar diversos compor-

tamentos diferentes.

Palavras-chave: Equação de Burgers, cálculo fracionário, método sub-equação.
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