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ABSTRACT. The genus graphs have been studied by many authors, but just a few results concerning in

special cases: Planar, Toroidal, Complete, Bipartite and Cartesian Product of Bipartite. We present here
a general lower bound for the genus of a abelian Cayley graph and construct a family of circulant graphs

which reach this bound.
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1 INTRODUCTION

The genus of a graph, defined as the minimum genus of a 2-dimensional surface4 on which this graph
can be embedded without crossings ([7, 21]), is well known as being an important measure of the graph

complexity and it is related to other invariants.

A circulant graph, Cn (a1, . . . , ak), is an homogeneous graph which can be represented (with crossings)

by n vertices ({v0, . . . vn−1}) on a circle, with two vertices being connected if only if there is jump of ai

from one to the other, ∀i = 1, . . . , k, where a jump is an edge between v j and vmod( j±ai,n) (Figure 1).

A circulant graph is particular case of abelian Cayley graph. Different aspects of circulant graphs have
been studied lately, either theoretically or through their applications in telecommunication networks and

distributed computation [10, 12, 11, 15, 13, 9].

Concerning specifically to the genus of circulant graphs few results are known up to now. We quote [3]

for a small class of toroidal (genus one) circulant graphs, [9] which establish a complete classification
of planar circulant graphs, [5] which establish a complete classification of minimum genus 1 and 2 for

circulant graphs, and the cases where the circulant graph is either complete or a bipartite complete graph
([4, 8, 17, 18, 20]).
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4The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-
intersecting closed simple curves without rendering the resultant manifold disconnected. It is equal to the number of
handles on it.
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In [6] the authors show how any circulant graph can be viewed as a quotient of lattices and obtain as

consequences that: i) for k = 2, any circulant graph must be either genus one or zero (planar graph) and
ii) for k = 3, there are circulant graphs of arbitrarily high genus.

We derive a general lower bound for the genus of abelian Cayley graph Cn (a1, . . . , ak) as
(k − 2) n + 4

4
(Proposition 1), and construct a family of abelian Cayley graphs which reach this bound (Corollary 4).

This note is organized as follows. In Section 2 we introduce concepts and previous results concerning
circulant graphs, abelian Cayley graphs and genus.

In Section 3 we derive a lower bound for the genus of an n-circulant graph of order 2 k (Proposition 1) and

construct families of graphs reaching this bound for arbitrarily k (Corollary 4).

2 NOTATION AND PREVIOUS RESULTS

In this section we recall concepts and results used in this paper concerning circulant graphs. We also fix the
notations which will be followed later on.

Let G = ({e = g1, . . . gn},+) be a finite abelian group. Given a subset S = {a1, . . . , ak} of G, the

associated Cayley graph (G, S) is an undirected graph whose vertices are the elements of G, and where two
vertices gi and g j are connected if and only if gi − g j = ±al for some al ∈ S. We remark that (G, S) is

connected if and only if S generates G as a group, and that this graph is 2k-regular if ai + ai �= 0,∀i =
1, 2, . . . k, and (2k − l)-regular otherwise, where l is a number of ai such that ai + ai = 0.

A circulant graph Cn (a1, . . . , ak) with n vertices v0, . . . vn−1 and jumps a1, . . . , ak , 0 < a j � �n/2�,
ai �= a j , is an undirected graph such that each vertex v j , 0 � j � n − 1, is adjacent to all the vertices

v j±ai mod n , for 1 � i � k. A circulant graph is homogeneous: any vertex has the same degree (number
of incident edges), with is 2 k except when a j = n

2 for some j , when the degree is 2 k − 1, a circulant

graph is a particular case of abelian Cayley graph (G = Zn, S = {a1, . . . , ak}).
The n-cyclic graph and the complete graph of n vertices are examples of circulant graphs denoted by

Cn (1) and Cn (1, . . . , �n/2�), respectively. Figure 1 shows on the left the standard picture of the circulant
graph C13(1, 6).
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Figure 1: The circulant graph C13(1, 6) represented in the standard form (left) and on a 2-dimen-

sional flat torus (right).
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In what follows we write (a1, . . . , ak) = (ã1, . . . , ãk) mod n to indicate that for each i , there is j such

that ai = ±ã j mod n. Two circulant graphs, Cn (a1, . . . , ak) and Cn (ã1, . . . , ãk) are said to satisfy the
Ádám’s relation if there is r , with gcd(r, n) = 1, such that

(a1, . . . , ak) = r (ã1, . . . , ãk) mod n (1)

An important result concerning circulant graphs isomorphisms is that circulant graphs satisfying the Ádám’s

relation are isomorphic ([1]). The reciprocal of this statement was also conjectured by Ádám. It is false for
general circulant graphs but it is true in special cases such as k = 2 or n = p or n = pq (p and q prime)

(see [11, 2]). In this paper we will not distinguish between isomorphic graphs.

Without loss of generality we will always consider a1 < · · · < ak � n/2 for a circulant graph

Cn (a1, . . . , ak).

A circulant graph Cn (a1, . . . , ak) is connected if, and only if, gcd(a1, . . . , ak , n) = 1 ([3]). In this paper

we just consider connected circulant graphs.

The genus of a graph is defined as the minimum genus, �, of a 2-dimensional orientable compact surface
M� on which this graph can be embedded without crossings ([7, 21]). This number, besides being a measure

of the graph complexity, is related to other invariants. Let G a graph of the genus �, defines p� as p� =⌊
(7+√

48�+1)
2

⌋
, so: the chromatic number of G is γ (G) = p� (Heawood conjecture) and the algebraic

connectivity 5 of G, μ(G), , satisfies μ(G) < p�−1 for all noncomplete graphs G if p�(p�−7) = 12(�−1),
see [14].

A graph E is a subdivision of H if it is constructed from H by possibly adding new vertices on the edges
of H . Finally, if there is a subdivision E of H which is a subgraph of G we say G is supergraph of H .

From this definition follows that

if G is a supergraph of H , genus(G)� genus(H ).

When a connected graph G is embedded on a surface, M�, of minimum genus � it splits the surface in

regions called faces, each one homeomorphic to an open disc surrounded by the graph edges, giving rise to
a tessellation on this surface. Denoting the number of faces, edges and vertices by f , e, and v respectively,

those numbers must satisfy the well known Euler’s second relation:

v + f − e = 2 − 2 � (2)

We quote next other known relations those numbers must satisfy ([7, 21]):

If G is a graph of genus � with v � l such that any face in M� has at least l sides in its boundary,

l f � 2 e and � � l − 2
2 l

e − 1
2

(v − 2). (3)

In the above expressions we have equalities if, only if, all the faces have l sides.

An upper bound for the genus of a connected graph of n vertices is given by the genus of the complete

graph, Cn (1, . . . , �n/2�), which is
⌈

(n−3)(n−4)
12

⌉
. Combining the lower bound above with a minimum of

three edges for each face, we can write the following inequality, for n � 3:⌈
1

6
e − 1

2
(n − 2)

⌉
� � �

⌈
(n − 3)(n − 4)

12

⌉
, (4)

5The algebraic connectivity is the second-smallest eigenvalue of the Laplacian matrix of G.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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where �x	 is the ceiling (smallest integer which is greater or equal to) of x.

For a circulant graph Cn (a1, . . . , ak), a1 < a2 < · · · < ak we can replace e by e = n k when ak < n
2 , or

e = n (2k − 1)/2 when ak = n
2 . We can then rewrite the lower bound in last expression as

⌈ n
6 (k − 3) + 1

⌉
or

⌈ n
6 (k − 4) + 1

⌉
, respectively.

2.1 Previous results on genus of circulant graphs and abelian Cayley graphs

• Theorem (Ringel, Beineke and Harary, 1965 [19, 4]). The genus of the n-cube graph Qn is 1 +
2n−3(n − 4).

• Theorem (Ringel, 1965 [17, 18]). The genus of the complete bipartite graph Km,n is
⌈

(m−2)(n−2)
4

⌉
.

Since Kn,n is the circulant graph C2 n (1, 3, . . . , 2
⌈

n−1
2

⌉
−1), the genus of this one-parameter family

is
⌈

(n−2)2

4

⌉
.

• Theorem (White, 1970 [22]). Let G = Cm1�Cm2 · · ·�Cmr
6, where Cmi is even cycle, r > 1 and

mi > 3 for all i . Then the genus of G is 1 + v(r − 2)/4, where v = m1m2, · · · mr .

• Theorem (Pisanski, 1980 [16]) Let G and H be connected r-regular bipartites graphs. Then the

Cartesian product G�H of G and H has genus 1 + pm(r − 2)/4 where p and m are the number of

vertices of G and H , respectively.

• Theorem (Heuberger, 2003 [9]). A planar circulant graph is either the graph Cn (1), or Cn (a1, a2),

where i) a2 = ±2 a1 mod n and n is even, ii) a2 = n/2, and a2 is even.

• For k = 2, and general (a1, a2), we have shown that circulant graphs Cn (a1, a2) are very far for

from reaching the upper bound for the genus given in (4), as it was shown in [6]:

Proposition 1 ([6]). Any circulant graph Cn (a1, a2), a1 < a2 � n/2, has genus one, except for

the cases of planar graphs: i) a2 = ±2 a1 mod n, and n is even, ii) a2 = n/2, and a2 is even.

• For k = 3 and n �= 2 a3 we can assert that the genus of Cn (a1, a2, a3) satisfies:

1 � � �
⌈

(n − 3)(n − 4)

12

⌉
(5)

The genus of the complete graph C7(1, 2, 3) achieves the minimum value one (4). However, in
opposition to the case k = 2, the genus of a circulant graph Cn (a1, a2, a3) can be arbitrarily high:

Proposition 2 ([6]). There are circulant graphs Cn (a1, a2, a3) of arbitrarily high genus. A family

of such graphs is given by: n = (2 m + 1) (2 m + 2) (2 m + 3), m � 2; a1 = (2 m + 2) (2 m + 3),

a2 = (2 m + 1)(2 m + 2) (m + 1), a3 = (2 m + 2) (2 m + 3) (m + 1), with the correspondent genus

satisfying

� � 2 m (m + 1)2 + 1. (6)

In the next section we deal with the more general class of abelian Cayley graphs and establish a lower bound

for their genus.

6The Cartesian product G1�G2 of the graphs G1 and G2 is a graph such that the vertex set of G1�G2 is the Cartesian
product of the set of vertices of G1 with the set of vertices G2 (V (G1) × V (G2)) and any two vertices (u,u’) and (v,v’)
are adjacent in G1�G2 if and only if either u = v and u′ is adjacent with v′ in G2, or u′ = v′ and u is adjacent with v

in G1.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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3 QUADRANGULAR EMBEDDING OF ABELIAN CAYLEY GRAPHS

In this section we consider Cayley graphs of abelian groups, a more general class of graphs of which circu-
lant graphs form a very particular subclass, the Cayley graphs of cyclic groups. Nevertheless, an important

feature of circulant graphs, their embeddings in k-dimensional tori, is shared by the whole class of Cayley
graphs of abelian groups. We will see in the following that k is associated to the number of elements of

the generating set of the edges of the Cayley graph. We will determine a subclass of these graphs that has
quadrangular embeddings, and hence a subclass where we know the genus of each graph.

It is known that graphs that have 3-cycles may have embeddings with triangular faces, and some easy
calculations establish a lower bound for the genus. In general we can also establish a lower bound that

depends on the girth l of the graph. If (G, S) is a Cayley graph and there are no solutions of ah =
±(ai ± a j ) for h, i, j ∈ {1, 2, . . . k} (not necessarily distinct), the girth is always 4 (a typical 4-cycle is

0, ai , ai + a j , a j , 0), which implies at least four edges for each face.

If the graph is 2k-regular, then

� � l − 2

2 l
a − v − 2

2
= 2

8
n k − n − 2

2
= n k − 2 n + 4

4
.

Hence, we get the following lemma, which establishes a lower bound for circulant graphs with no triangular

faces.

Lemma 1. The genus, �, of the circulant graph Cn (a1, . . . , ak), such that ai �= a j + al , ∀ i, j, l � k and

n �= 2 ai , ∀i satisfy:

� � n k − 2 n + 4

4
.

In what follows the (additive) subgroup of G = Zn1 × Zn2 × · · · × Znl generated by a1, . . . , ak ∈ G is

denoted by 〈a1, . . . , ak〉, and let Gs = 〈a1, a2, . . . , as〉  G. Define Ls as the group order of as , 1 � s � k,
where L1 = o(a1) is the group order of a1, and Ls = o(as + Gs−1) = [Gs : Gs−1] is the index of the

quotient group 1 < s � k.

Under the above conditions we can assert that x ∈ G can be expressed uniquely as a linear combination,

x = m1a1 + m2a2 + . . . mkak , where 0 � mi < Li . This fact is stated in the next a lemma.

Lemma 2. Given x ∈ G and Gs  G, 1 � s < k then there exist a unique mi ∈ N and Rs,x such that

x = m1 a1 + · · · + ms as + Rs,x and Rs,x = R(ms+1, . . . , mk) = ms+1as+1 + · · · mkak

with 0 � mi < Li for all i .

Through the Lemma 2 we can show that not only the circulant graphs [6] but any Cayley graph of an
abelian group can be embedded in a k-dimensional torus. The construction of such embedding, for k = 2,

is illustrade in Figure 2.

We consider the mapping:

ϕ : Zk −→ G

(x1, . . . , xk ) �−→ x1a1 + · · · xkak .
(7)

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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Therefore
Zk

ker ϕ
� G and ker ϕ is lattice. The Cayley graph associated to G, as a quotient of lattices, is

then naturally embedded in flat torus which a polytope generated by basis of this lattice, with the parallel

faces identified.

To proceed in a uniform way we can use the standard Hermite basis for kerϕ, as it done for circulant graphs
in [9].

We remark that Hermite basis of ker ϕ, {U1, . . . , Uk}, is given as columns of a upper triangular matrix
(bi, j )k×k , where bi,i = Li and 0 � bi, j < Li .

In Figure 2, we consider the Cayley graph of G = Z2 × Z8 and a1 = (1, 2) and a2 = (0, 1), therefore
o(a1) = 4 and o(a2 + 〈a1〉) = 4 and Hermite basis is {(4, 0), (2, 4)}.
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(a) Flat torus (b) Torus

Figure 2: 2-embedding of Cayley graph (Z2 ×Z8, {(1, 2), (0, 1)}).

We will construct the embedding of Cayley graphs (G, S) by induction on k = #S (#S is equal to the

cardinality of S). Note that (G, S − {ak}) may be disconnected: it is well known that this graph has d =
gcd(n, a1, . . . , ak−1) components, where Lk = [G = Gk : Gk−1] = o(ak + Gk−1), and that each

component is isomorphic to the Cayley graph (Gk−1, S − {ak}). Since x and y are linked by a path if and
only if x − y = m1 a1 + · · · + mk−1 ak−1 in G, it follows that x and y are in the same component if and

only if x ≡ y ∈ Gk−1. Hence, each 0 � js < Lk determines a component and the numbers,

Rk,mk + m1 a1 + · · · + mk−1 ak−1

describe all vertices of the component of (G, S − ak) associated to mk , where 0 � mk < Lk and Rk,mk is

a fixed element of this component.

Proposition 3. Let (G, {a1, . . . , ak}), where n = #G = 2l, and Li = 2li , 1 � i � k, and l1 > 1 and

ai �= ±(a j ± ah ), 1 � i, j, h < k. Hence, the genus of G is
n k − 2 n + 4

4
.

Proof. The proof will be done by induction on k. For k = 2 it is trivial (vide Figure 2). Assume that the

result holds for k − 1. The graph (G, {a1, . . . , ak−1}) is a disconnected Cayley graph with an even number
of connected components (Lk = 2lk ), Hmk = Rk,mk + Gk−1, 0 � mk < 2lk , where 2lk = [G : Gk−1].
Each component Hmk can be embedded on a surface Smk giving to a rise tessellation where every face has
4 edges. As in Figure 3, we reverse the orientation of the components that contain the odd multiples of ak .

We wish to add tubes that, topologically, are prisms with squared bases.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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Figure 3: The construction of the C32(8, 2, 3) embedding. Tubes are added on the two connected
components of C32(8, 2) considered with reversal orientation.

Let x ∈ Hmk , then x = mkak + m1a1 + · · · + mk−1ak−1 where 0 � mk < 2lk and 0 � mi < 2li as in

Lemma 2. Given 0 < j < k − 1, we can also express

x = mkak + (2p j + δ j ) a j + (2pk−1 + δk−1) ak−1 + g and (8)

x = mkak + (2q j + δ j ) a j + ((2qk−1 + 1) − δk−1) ak−1 + g (q j > 0) (9)

with g =
∑

i=1,...,k−2
i �= j

miai and δ j , δk−1 ∈ {0, 1}.

Three possibilities should be considered:

i) Each vertex of Hmk , mk even, is a vertex of a square determined by {P, P + ak−1, P + ak−1 +
a j , P + a j }, where P is of the form

P = mkak + 2p j a j + 2pk−1 ak−1 + g, (10)

where 0 � 2 p j < L j , 2 pk−1 < Lk−1. Just as Figure 3, each such square is then connected to the

square {P +ak , P +ak +ak−1, P +ak +ak−1 +a j , P +ak +a j } (which lies on Hmk+1) by a prism
which contains the edges [P, P+ak ], [P+ak−1, P+ak+ak−1], [P+ak−1+a j , P+ak+ak−1+a j ]
and [P+a j , P+ak+a j ]; and then we cut out both squares. Doing this for every j ∈ {1, 2, . . . , k−2}
we construct a surface where each edge of the form [x, x + ak ] is embedded without crossings.

ii) Each vertex of Hmk , mk odd and mk �= 2lk − 1, is a vertex of a square determined by {Q, Q +
ak−1, Q + ak−1 + a j , Q + a j }, where Q is of the form

Q = mkak + 2q j a j + (2qk−1 + 1) ak−1 + g, (11)

where 2 � 2q j � L j , 2 qk−1 < Lk−1. The same reasoning as above can be applied by replacing P

by Q.

iii) Each vertex, x of H2lk−1, x + ak ∈ H0. This case requires special care, since we need to choose a

face in H2lk−1 and another in H0, once that some faces have been excluded. This choice depends on
how 2lk ak is described in Gk , since 2lk ak = m̃ j a j + m̃k−1ak−1 + g̃, g̃ =

∑
i=1,...,k−2

i �= j

m̃i ai , choose

Q̃ such that m j +m̃ j , mk−1 +m̃k−1 and m j are not both even, and mk−1 is not odd. We then repeat
the procedure of item (i), replacing P by Q̃.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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Therefore, under restrictions considered in this proposition we always can connect the excluded squares by

prisms and construct a surface which is tessellated by (G, S), and each face of this tessellation is a square,

by Lemma 1 the genus is greater than or equal to
n k − 2 n + 4

4
, remember that equality is achieved if all

faces have the same number of sides, and this concludes the proof. �

Corollary 4. Let G = Cn (a1, . . . , ak), where n = 2r l, ai = 2ri li , i = 1, . . . k − 1, where l, li , ak odd,

0 < ri+1 < ri < r and ai+1 �= ±2 ai , 1 � i < k. Hence, the genus of G is
n k − 2 n + 4

4
.

The next example shows that there are more circulant graphs than the ones considered in Proposition 3

which also can be embedded giving rise to a quadrilateral tessellation.

Example 3.1. For the graph C32(8, 2, 3, 7), if we consider C32(8, 2, 3) as in last proposition, we note

that just half the faces of the tessellation of C32(8, 2) are excluded to add tubes. We can also exclude the

other faces adding tubes to support the edges ±a4. Hence this is an embedding generating quadrilateral

faces and since there are no cycles of size 3, the expression
n k − 2 n + 4

4
for the genus still holds.

Figure 4 shows all the circulant graphs of 32 vertices for which the genus can be given by Proposition 2.1
(Heuberger), 1 and Corollary 4

k a1 ∈ a2 ∈ a3 ∈ a4 ∈ �

1 I 0
2 I 2 (I − {±a1}) 1

2 I 4 I 1
2 I 8 I – – 1
3 I 2 (I − {±a1}) 4 (I − {±2 a2}) – 9

3 I 2 (I − {±a1}) 8 I – 9
3 I 4 I 8 (I − {±2 a2}) – 9
4 I 2 (I − {±a1}) 4 (I − {±2 a2}) 8 (I − {±2 a3}) 17

Figure 4: All circulant graphs of 32 vertices satisfying Propositions 2.1 (Heuberger), 1 and 4
(I = {±1, ±3, . . . , ±15}).

We note that some graphs satisfying the hypotheses of the last proposition belong to the class of graphs with

given genus. For some of those graphs we could have used the results of White and Pisanski (see [22, 16]) to
determine their genus namely. The particular class of Cartesian product of bipartite graphs which satisfy the

proposition hypothesis. However, many of the graphs considered in the last proposition are not Cartesian
product of bipartite graphs.

For example the Cayley graphs G1 = (Z2 ×Z8, {(1, 2), (0, 1)}) and G2 = C16(1, 4).

We can assert that the G1 is not a product of de bipartite graphs, since as G1 = G�H , a regular graph,
to be such a product, each graph factor needed to be also a regular graph. There are few possibilities to

be considered here: #G = 2 or 4 and #H = 8 or 4, respectively. That is, either i) G = P2 and H is a

3-regular complete bipartite graph (hypothesis of White and Pisanski results), what is not possible since
H is bipartite and therefore it should be 4-regular, or ii) G = H = K2,2 what again cannot be true, since
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K2,2�K2,2 = (Z4×Z4, {(1, 0), (0, 1)}), which has spectrum {8, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 0} and

G1 has spectrum {8, 6, 6, 4+√
2, 4+√

2, 4+√
2, 4+√

2, 4, 4, 4−√
2, 4−√

2, 4−√
2, 4−√

2, 2, 2, 0}.
G2 also is not a product of bipartite graphs since it has odd size cycles (ex: 0, 1, 2, 3, 4, 0) what does not

occur for bipartite graphs.
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RESUMO. O gênero de grafos têm sido estudados por muitos autores, mas existem resultados
apenas para casos especiais: Planar, Toroidal, Completo, Bipartido e Produto cartesiano de

Bipartidos. Apresentamos aqui um limite inferior para o gênero de um grafo de Cayley de um

grupo abeliano e construı́mos uma famı́lia de grafos circulantes que atingem esse limitante.

Palavras-chave: Grafos de Cayley abelianos, Gênero de grafos, Toro plano, Tesselações.
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220 (1965), 88–93.
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