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ABSTRACT. A complete characterization of the boundary of the stability region of a class of nonlinear
autonomous dynamical systems is developed admitting the existence of Subcritical Hopf nonhyperbolic
equilibrium points on the boundary of the stability region. The characterization of the stability region de-
veloped in this paper is an extension of the characterization already developed in the literature, which
considers only hyperbolic equilibrium point. Under the transversality condition, it is shown the boundary
of the stability region is comprised of the stable manifolds of all equilibrium points on the boundary of the
stability region, including the stable manifolds of the subcritical Hopf equilibrium points of type k, with
0 ≤ k ≤ n − 2, which belong to the boundary of the stability region.

Keywords: dynamical systems, nonlinear systems, stability region, boundary of the stability region, sub-
critical Hopf equilibrium point.

1 INTRODUCTION

Dynamic and topological characterizations of the boundary of the stability regions of autono-

mous nonlinear dynamic systems were developed, for example in [3, 5]. Those characterizations
were derived under some assumptions over the vector field, including hyperbolicity of equilib-
rium points on the boundary of the stability region and transversality conditions.

Although the hyperbolicity of equilibrium points of a dynamical system is a generic property,

that is, it is satisfied for almost all dynamic systems, violation of the hyperbolicity condition of
equilibrium points on the boundary of the stability region commonly occurs when the system
is subject to variations of parameters. With this variation of parameters, the occurrence of local
bifurcations of equilibrium points on the boundary of the stability region is common.
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In this paper, we are interested in studying the characterization of the stability region and its

boundary when the hyperbolicity condition on the boundary is violated due to the presence of
nonhyperbolic equilibrium points. Some advances in this direction have already been obtained
and reported in the literature. A complete characterization of the boundary of the stability region

in the presence of saddle-node equilibrium points was developed in [1]. A complete characteri-
zation was also developed considering type-k supercritical Hopf equilibrium points, with k ≥ 1,
on the boundary [9].

In this paper, a complete characterization of the stability boundary is developed admitting the

existence of type-k subcritical Hopf nonhyperbolic equilibrium points, with k ≥ 1, on the bound-
ary. More precisely, if xs is an asymptotically stable equilibrium point and A(xs ) is its stability
region, it is proven in this paper, under mild assumptions, that:

∂ A(xs ) =
⋃

i

W s(xi )
⋃

j

W s(p j ),

that is, the stability boundary ∂ A(xs ) is comprised of the union of all stable manifolds of the

hyperbolic equilibrium points lying on the stability boundary union with the stable manifolds
of the subcritical Hopf equilibrium points on the stability boundary. This characterization will
help us to understand the mechanisms of Hopf bifurcations on the stability boundary and their

implication on the stability region and its changes with respect to parameter variations.

This article is organized as follows. In Section 2, a review of the characterization of the boundary
of the stability region of nonlinear autonomous dynamic systems is presented. In Section 3, the
subcritical Hopf equilibrium points are studied and the local dynamics on the neighborhood of

these points is reviewed. The main contribution of this paper is presented in Section 4.

2 PRELIMINARIES

In this section, we review some classic concepts related to the theory of dynamical systems,
which are essential for the further developments of this work. More details on the contents

explored in this section can be found at [18, 15].

Consider the nonlinear autonomous dynamic system:

ẋ = f (x) (2.1)

where x ∈ Rn and f : Rn → Rn is a smooth vector field. We use the term smooth to refer to a

field whose differentiability class is large enough, namely a vector field of class Cr with r ≥ 1.
The solution of (2.1) starting at x at time t = 0 is denoted by ϕ(t, x).

Suppose that xs is an asymptotically stable equilibrium point of system (2.1). The stability region
(or region of attraction) of xs is the set A(xs ) = {x ∈ Rn| ϕ(t, x) → xs as t → +∞}, of all

initial conditions x ∈ Rn whose trajectories converge to xs when t tends to infinity. The stability
region A(xs ) is an open and invariant set. Its closure A(xs ) is invariant and the boundary of the
stability region ∂ A(xs ) is a closed and invariant set.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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With the motivation of better understanding the boundary of the stability region and getting

better estimates of the stability region, characterizations of the boundary of the stability region
were developed.

The first characterization of the boundary of the stability region of an asymptotically stable equi-
librium point xs of system (2.1) was developed in [14]. A generalization of the characterization

proposed in [14] was developed in [4], under the following assumptions:

(A1) All the equilibrium points on ∂ A(xs ) are hyperbolic;

(A2) The stable and unstable manifolds of equilibrium points on ∂ A(xs ) satisfy the transversal-
ity condition;

(A3) Trajectories on ∂ A(xs ) approach one of the equilibrium points as t → ∞.

The boundary of the stability region of an asymptotically stable equilibrium point xs of system
(2.1), satisfying assumptions (A1), (A2) and (A3), is the union of all stable manifolds of the
equilibrium points on the boundary, in other words ∂ A(xs ) = ⋃

i W s(xi ), where xi , i = 1, 2, . . .

are the hyperbolic equilibrium points on the stability boundary ∂ A(xs ).

Assumption (A3) is not a generic property of dynamical systems and needs to be checked [3].
Sufficient conditions for the satisfaction of assumption (A3) were given in [3]. The existence of
an energy function is a sufficient condition to guarantee the fulfilment of assumption (A3), and,

consequently, a fairly large class of dynamical systems satisfy this condition, see [3].

Although assumption (A1) is generic, see [11], studying the characterization of the stability
boundary in the presence of non-hyperbolic equilibrium points is important to understand how
the stability region changes as a consequence of parameter variations. These changes were

already investigated in the occurrence of type-zero saddle-node bifurcations on the stability
boundary [1], [2] and in the occurrence of type-k supercritical Hopf equilibrium points, with
1 ≤ k ≤ n − 2, [8, 9].

In this paper, we also study the characterization of the boundary of the stability region when

assumption (A1) is violated. More specifically, we study the characterization of the stability
boundary when a subcritical Hopf non-hyperbolic equilibrium point is found on the stability
boundary.

3 SUBCRITICAL HOPF EQUILIBRIUM POINT

In this section, a particular type of non-hyperbolic equilibrium point, namely the subcritical
Hopf equilibrium point, is studied. Particularly, the dynamic behavior in a neighborhood of this
equilibrium is explored in details and also the asymptotic behavior of solutions in the invariant

local manifolds is discussed.

Consider the nonlinear dynamical system (1). An equilibrium point x� of (2.1) is said to be
hyperbolic if all the eigenvalues of the Jacobian matrix Dx f (x�) do not have null real part.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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Furthermore, a hyperbolic equilibrium point x� is of type-k if the Jacobian matrix possesses k

eigenvalues with positive real part and n−k eigenvalues with negative real part. A non-hyperbolic
equilibrium point p ∈ Rn of (1) is called a Hopf equilibrium point if the following conditions
are satisfied:

(i) Dx f (p) has a simple pair of purely imaginary eigenvalues, ±iω, and no other eigenvalue

with null real part;

(ii) l1 �= 0, where l1 is the first Lyapunov coefficient, see [8, 9].

Lyapunov coefficients indicate the level of degeneration of the vector field. If the first Lyapunov

coefficient is non-zero, then the vector field has a degeneration of cubic order showing that cubic
terms are those that determine the type of dynamic behavior location in the neighborhood of the
non-hyperbolic equilibrium point in the cental manifold, see [18] for more details.

Hopf equilibrium points can be classified according to the sign of the first Lyapunov coefficient.

A Hopf equilibrium point p ∈ Rn of (2.1) is called a supercritical Hopf equilibrium point if the
first Lyapunov coefficient l1 < 0 and is called a subcritical Hopf equilibrium point if the first
Lyapunov coefficient l1 > 0.

Hopf equilibrium points can be also classified in types according to the number of eigenvalues

of Dx f (p) with positive real part. A Hopf equilibrium point p of (2.1) is called a type-k Hopf
equilibrium point if Dx f (p) has k (k ≤ n − 2) eigenvalues with positive real part and n − k − 2
with negative real part.

In this paper, we are primarily concerned with subcritical Hopf equilibium points. If p is a

subcritical Hopf equilibrium point, then the following properties are satisfied, see [18, 10]:

(1) p is a type-0 subcritical Hopf equilibrium point of (2.1):

(i) The (n − 2)-dimensional local stable manifold W s
loc(p) of p exists, is unique, and if

q ∈ W s
loc(p) then ϕ(t, q) −→ p as t −→ +∞.

(ii) The bidimensional local center manifold W c
loc(p) of p exists, is unique, and if q ∈

W c
loc(p) then ϕ(t, q) −→ p as t −→ −∞.

(2) p is a type-k subcritical Hopf equilibrium point of (2.1), with 1 ≤ k ≤ n − 3:

(i) The k-dimensional local unstable manifold W u
loc(p) of p exists, is unique, and if q ∈

W u
loc(p) then ϕ(t, q) −→ p as t −→ −∞.

(ii) The (n − k − 2)-dimensional local stable manifold W s
loc(p) of p exists, is unique, and

if q ∈ W s
loc(p) then ϕ(t, q) −→ p as t −→ +∞.

(iii) The (k+2)-dimensional local unstable center manifold W cu
loc(p) of p exists, is unique,

and if q ∈ W cs
loc(p) then ϕ(t, q) −→ p as t −→ −∞.

(3) p is a type-(n − 2) subcritical Hopf equilibrium point of (2.1):

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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(i) The (n − 2)-dimensional local unstable manifold W u
loc(p) of p exists, is unique, and if

q ∈ W u
loc(p) then ϕ(t, q) −→ p as t −→ −∞.

(ii) The bidimensional local center manifold W c
loc(p) of p exists, is not unique, and if

q ∈ W c
loc(p) then ϕ(t, q) −→ p as t −→ −∞.

Figure 1.1(a) illustrates the invariant manifolds for a type-1 subcritical Hopf equilibrium point in

R3 and Figure 1.1(b) illustrates these invariant manifolds for a type-0 subcritical Hopf equilib-
rium point in R3.

x

y

z

Wu(p)

Wc(p)

(a) Manifolds W c(p) and W s(p) for a type-1 sub-
critical Hopf equilibrium point p of system (2.1) in
R3. W c(p) is not unique. Three choices of W c(p)

are displayed in this figure.

x

y

z

Ws(p)

Wc(p

(b) Manifolds W c(p) and W u (p) for a type-0
subcritical Hopf equilibrium point p of system
(2.1) in R3. In this case, W c(p) is unique.

Figure 1

The stable and unstable manifolds of a hyperbolic equilibrium point are defined by extending the
local manifolds through the flow, see [16]. Often, this technique to define the global manifolds

cannot be applied to general non-hyperbolic equilibrium points. Even though, in the particular
case of subcritical Hopf equilibrium points, one can also define the global manifolds W s(p),
W u(p), W c(p) and W cu(p) by extending the local manifolds W s

loc(p), W u
loc(p), W c

loc(p) and

W cu
loc(p) through the flow.

4 SUBCRITICAL HOPF EQUILIBRIUM POINT ON THE STABILITY BOUNDARY

In this section, results of characterization of equilibrium points on the boundary of the stability
region are presented. The characterization of the boundary of stability region in the presence

of a subcritical Hopf equilibrium point will be developed in two steps. First we study a local
characterization of the stability boundary by studying and characterizing the equilibrium points
that belong to the stability boundary, then a global characterization on the boundary is developed.

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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The next theorems provide necessary and sufficient conditions to guarantee that a subcritical

Hopf equilibrium point lies on the boundary of the stability region in terms of the properties of
its stable, center-unstable and center manifolds.

Theorem 4.1. (Subcritical Hopf equilibrium point on ∂ A(xs )) Let p be a subcritical Hopf
equilibrium point of (2.1). Suppose also, the existence of an asymptotically stable equilibrium
point xs and let A(xs ) be its stability region. Then the following holds:

(i) if p is a type-0 subcritical Hopf equilibrium point of (2.1), then:
p ∈ ∂ A(xs ) ⇐⇒ (W c

loc(p) \ {p}) ∩ A(xs ) �= ∅
p ∈ ∂ A(xs ) ⇐⇒ W s

loc(p) ∩ ∂ A(xs ) �= ∅
(ii) if p is a type-k subcritical Hopf equilibrium point of (2.1), with 1 ≤ k ≤ n − 3, then:

p ∈ ∂ A(xs ) ⇐⇒ (W cu
loc(p) \ {p}) ∩ A(xs ) �= ∅

p ∈ ∂ A(xs ) ⇐⇒ W s
loc(p) ∩ ∂ A(xs ) �= ∅

(iii) if p is a type-(n − 2) subcritical Hopf equilibrium point of (2.1), then:

p ∈ ∂ A(xs ) ⇐⇒ (W cu
loc(p) \ {p}) ∩ A(xs ) �= ∅

Proof. (i) (⇐=) Suppose that (W c
loc(p) \ {p}) ∩ A(xs ) �= ∅. Then there exists q ∈ (W c

loc(p) \
{p}) ∩ A(xs ). Observe that ϕ(t, q) −→ p as t −→ −∞. On the other hand, set A(xs ) is

invariant thus, ϕ(t, q) ∈ A(xs ) for all t ≤ 0. Consequently p ∈ A(xs ), since A(xs ) is closed.
Since p /∈ A(xs ), we have that p ∈ Rn \ A(xs ). Therefore, p ∈ ∂ A(xs ). Now suppose that
W s

loc(p) ∩ ∂ A(xs ) �= ∅. Therefore, there exists q ∈ W s
loc(p) ∩ ∂ A(xs ). Note that ϕ(t, q) −→ p

as t −→ +∞. Since set ∂ A(xs ) is invariant and q ∈ ∂ A(xs ), thus ϕ(t, q) ∈ ∂ A(xs ) for all
t ≥ 0. Since ∂ A(xs ) is closed, thus p ∈ ∂ A(xs ).

(=⇒) Suppose that p ∈ ∂ A(xs ). Let Nc be a fundamental domain of W c(p), that is,⋃
t∈R ϕ(t, Nc) = W c(p) \ {p}. Let Nc

ε be a fundamental neighborhood of radius ε of Nc,

namely Nc
ε = {x ∈ Rn : d(x, Nc) < ε}. As a consequence of λ-lemma, see [6], there ex-

ists a neighborhood U of p such that
⋃

t≤0 ϕ(t, Nc
ε ) ⊃ U \ W s

loc(p). Since p ∈ ∂ A(xs ), then
U ∩ A(xs ) �= ∅. On the other hand, W s

loc(p) ∩ A(xs ) = ∅. Thus, {U \ W s
loc(p)} ∩ A(xs ) �= ∅.

Consequently, there is a point z ∈ Nc
ε and a time t such that ϕ(t , z) ∈ A(xs ). Since A(xs ) is

invariant, then z ∈ A(xs ). As ε can be chosen arbitrarily small, we can find a sequence of points
{zi } with zi ∈ A(xs ) for all i = 1, 2, . . . such that d(zi , Nu) → 0 when i → +∞. By construc-
tion, the sequence {zi } is bounded and therefore has a convergent subsequence. Let {zik } be a

convergent subsequence, that is zik → z when ik → +∞. Observe that d(zik , Nc) → d(z, Nc)

when ik → +∞ and, therefore, z ∈ Nc ⊂ W c
loc(q) \ {q}. Thus,

z ∈ (W c
loc(p) \ {p}) ∩ A(xs ).

The proof that W s
loc(p) ∩ ∂ A(xs ) �= ∅ if p ∈ ∂ A(xs ) is very similar to the previous one and

therefore will be omitted.

The proofs of (ii) and (iii) are similar to the proof of (i) and will also be omitted. �

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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Theorem 4.1, besides being relevant for the development of a complete characterization of the

stability boundary in the presence of subcritical Hopf equilibrium points on the stability bound-
ary, provides a way of checking if a supercritical Hopf equilibrium point lies on the stability
boundary by checking if its center and center-unstable manifold intersects the stability region. A

numerical algorithm for checking this condition was suggested in [3].

As a consequence of Theorem 4.1, we know that W cu
loc(p)∩ A(xs ) �= ∅ is a sufficient condition to

guarantee that the subcritical Hopf equilibrium point p lies on the stability boundary. It will be
relevant, for the sake of developing a characterization of the stability boundary, verifying when

this condition is also necessary.

Items (i) and (ii) of Theorem 4.1 can be improved if we impose some conditions to the vector
field. Let xs be an asymptotically stable equilibrium point and consider the following assump-
tions:

(A1”) All the equilibrium points on ∂ A(xs ) are hyperbolic or subcritical Hopf equilibrium points.

(A2”) The stable, the unstable, the center-unstable and/or the center manifold of the equilibrium

points on ∂ A(xs ) satisfy the transversality condition.

It is worth mentioning that condition (A1”) is weaker than condition (A1), since it allows the
presence of non-hyperbolic subcritical Hopf equilibrium points on the stability boundary. The
next results provide necessary and sufficient conditions to guarantee that the hyperbolic equi-

librium points and subcritical Hopf equilibrium points belong to the boundary of the stability
region. Initially, we provide these conditions for type-1 hyperbolic equilibrium points and type-
zero subcritical Hopf equilibrium points on the boundary of the stability region and then these

conditions for equilibrium points of types higher than 1 follow by arguments of induction.

Theorem 4.2. Let A(xs ) be the stability region of an asymptotically stable equilibrium point xs

of (2.1). Let x� be a hyperbolic equilibrium point and p be a subcritical Hopf equilibrium point
of (2.1). If assumptions (A1”), (A2”) and (A3) are held, then:

1. if x� is a type-1 or a type-2 hyperbolic equilibrium point, then
(i) x� ∈ ∂ A(xs ) ⇐⇒ W u(x�) ∩ A(xs ) �= ∅
(ii) x� ∈ ∂ A(xs ) ⇐⇒ W s(x�) ⊂ ∂ A(xs )

2. if p is a type-0 subcritical Hopf equilibrium point, then
(i) p ∈ ∂ A(xs ) ⇐⇒ W c(p) ∩ A(xs ) �= ∅
(ii) p ∈ ∂ A(xs ) ⇐⇒ W s(p) ⊂ ∂ A(xs )

3. if p is a type-1 subcritical Hopf equilibrium point
(i) p ∈ ∂ A(xs ) ⇐⇒ W cu(p) ∩ A(xs ) �= ∅
(ii) p ∈ ∂ A(xs ) ⇐⇒ W s(p) ⊂ ∂ A(xs )

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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Proof. 1(i) (⇐=) Suppose that W u(x�) ∩ A(xs ) �= ∅. Since A(xs ) ⊂ A(xs ), then (W u
loc(x

�) \
{x�}) ∩ A(xs ) �= ∅. Therefore, by Theorem 3.7 of [3], we have that x� ∈ ∂ A(xs ).

(=⇒) Suppose that x� ∈ ∂ A(xs ). By Theorem 3.7 of [3], we can conclude that (W u
loc(x

�) \
{x�}) ∩ A(xs ) �= ∅. Consequently, (W u(x�) \ {x�}) ∩ A(xs ) �= ∅, because W u

loc(x
�) ⊂ W u(x�).

Let us show, under assumptions (A1”), (A2”) and (A3) that (W u(x�)\{x�})∩ A(xs ) �= ∅ implies

W u(x�) ∩ A(xs ) �= ∅. Let q ∈ (W u(x�) \ {x�}) ∩ A(xs ). If q ∈ A(xs ), then there is nothing
to be proved. Suppose that q ∈ ∂ A(xs ). From condition (A3), there is an equilibrium point p̂ ∈
∂ A(xs ) such that ϕ(t, q) → p̂ as t → +∞. By supposition (A1”), p̂ is a hyperbolic equilibrium

point or a subcritical Hopf equilibrium point. By the dimension of the unstable manifold of
the equilibrium point, see [7], we conclude that dim W cu( p̂) < dim W u(x�) or dim W c( p̂) <

dim W u(x�) if p̂ is a subcritical Hopf equilibrium point or dim W u( p̂) < dim W u(x�) if p̂ is a

hyperbolic equilibrium point.

Let x� be a type-1 hyperbolic equilibrium point. Consequently, dim W u( p̂) < 1. Hence
dim W u( p̂) = 0 and consequently p̂ is a type-zero hyperbolic equilibrium point. This leads us
to a contradiction, because these type-zero equilibrium points cannot belong to ∂ A(xs ). Hence,

q ∈ A(xs ) and therefore, W u(x�) ∩ A(xs ) �= ∅.

Let x� be a type-2 hyperbolic equilibrium point. If p̂ is a subcritical Hopf equilibrium point,
then dim W cu( p̂) < 2 or dim W c( p̂) < 2, which is a contradiction since the central manifold
of a subcritical Hopf equilibrium point has at least dimension 2. Let p̂ be a hyperbolic equilib-

rium point and, therefore, dim W u( p̂) < 2. It follows that dim W u( p̂) = 1, since hyperbolic
equilibrium points of type-zero can not belong to the boundary of the stability region. Therefore,
W u( p̂) ∩ A(xs ) �= ∅. Let y ∈ W u( p̂) ∩ A(xs ) and B(y, ε) be an open ball of radius ε > 0

centered at y. Since A(xs ) is an open set, then B(y, ε) ⊂ A(xs ) for ε sufficiently small. Let Nc

be a neighborhood of q at W u(x�). The neighborhood Nc contains a transversal section D of
W s( p̂) at the point q with dimension dim D = 1. By λ-lemma, see [6], there is a point w ∈ D

and a time tw > 0 such that ϕ(tw, w) ∈ Nc . Since A(xs ) is an invariant set, then w ∈ A(xs ).
Therefore, w ∈ W u(x�) ∩ A(xs ) and, consequently, W u(x�) ∩ A(xs ) �= ∅.

1(ii) (⇐=) Suppose that W s(x�) ⊂ ∂ A(xs ). Since x� ∈ W s (x�), then x� ∈ ∂ A(xs ).

(=⇒) Suppose now that x� ∈ ∂ A(xs ). By item 1(i) of Theorem 4.2, we conclude that W u(x�) ∩
A(xs ) �= ∅. Let y ∈ W u(x�) ∩ A(xs ). Since y ∈ W u(x�), then there is T < 0 such that

ϕ(T, y) ∈ W u
loc(x

�). Let z = ϕ(T, y). As y ∈ A(xs ) and A(xs ) is an invariant set, then
z ∈ A(xs ). It follows that z ∈ W u

loc(x
�) ∩ A(xs ). Let B(z, ε) be an open ball of radius ε > 0

centered at z where ε is an arbitrarily small number. Let q̂ be an arbitrary point of W s(x�).
In particular, for some T > 0 we have q̃ = ϕ(T , q̂) ∈ W s

loc(x
�). Let S be a disk at point

q̃ of dim S = 1 or dim S = 2 transverse to W s
loc(x

�), if x� is a type-1 or a type-2 hyperbolic
equilibrium point, respectively. By λ-lemma, see [6], there is a point w ∈ S and a time tw > 0
such that ϕ(tw, w) ∈ B(z, ε). Since A(xs ) is an invariant set, then w ∈ A(xs ). As ε and

the disk S can be chosen arbitrarily small, then there are points at A(xs ) arbitrarily close to
q̃ . Consequently, q̃ ∈ A(xs ). Since W s

loc(x
�) ∩ A(xs ) = ∅, then q̃ ∈ ∂ A(xs ). As ∂ A(xs ) is

Tend. Mat. Apl. Comput., 17, N. 2 (2016)
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invariant, q̂ = ϕ(−T , q̃) ∈ ∂ A(xs ). As the choice of q̂ at W s(x�) was arbitrary, then we can

conclude that W s (x�) ⊂ ∂ A(xs ).

2(i) (⇐=) Suppose that W c(p) ∩ A(xs ) �= ∅. Since A(xs ) ⊂ A(xs ), then (W c
loc(p) \ {p}) ∩

A(xs ) �= ∅. Therefore, by item (i) of Theorem 4.1, we have that p ∈ ∂ A(xs ).

(=⇒) Suppose that p ∈ ∂ A(xs ). By Theorem 4.1, we can conclude that (W c
loc(p) \ {p}) ∩

A(xs ) �= ∅. Consequently, (W c(p) \ {p}) ∩ A(xs ) �= ∅, because W c
loc(p) ⊂ W c(p). Let us

show, under assumptions (A1”), (A2”) and (A3) that (W c(p) \ {p}) ∩ A(xs ) �= ∅ implies
W c(p) ∩ A(xs ) �= ∅. Let q ∈ (W c(p) \ {p}) ∩ A(xs ). If q ∈ A(xs ), then there is nothing
to be proved. Suppose that q ∈ ∂ A(xs ). From condition (A3), there is an equilibrium point

p̂ ∈ ∂ A(xs ) such that ϕ(t, q) → p̂ when t → +∞. By the dimension of the unstable manifold
of the equilibrium point, see [7], we conclude that p̂ �= p. Then p̂ is a hyperbolic equilibrium
point or a subcritical Hopf equilibrium point and we conclude that dim W cu( p̂) < dim W cu(p)

or dim W c( p̂) < dim W cu(p), if p̂ is a subcritical Hopf equilibrium point or dim W u( p̂) <

dim W cu(p), if p̂ is a hyperbolic equilibrium point, see [7]. If p̂ is a subcritical Hopf equilib-
rium point, then dim W cu( p̂) < 2 or dim W c( p̂) < 2, which is a contradiction since the central

manifold of a subcritical Hopf equilibrium point has at least dimension 2. Let p̂ be a hyperbolic
equilibrium point and, therefore, dim W u( p̂) < 2. It follows that dim W u( p̂) = 1, since hy-
perbolic equilibrium points of type-zero can not belong to the boundary of the stability region.
Therefore, by item 1(i) of Theorem 4.2, W u( p̂)∩A(xs ) �= ∅. Let y ∈ W u( p̂)∩A(xs ) and B(y, ε)

be an open ball of radius ε > 0 centered at y. Since A(xs ) is an open set, then B(y, ε) ⊂ A(xs )

for ε sufficiently small. Let Nc be a neighborhood of q at W c(p). The neighborhood Nc contains
a transversal section D of W s( p̂) at the point q with dimension dim D = 2. By λ-lemma for

non hyperbolic equilibrium points, see [6], there is a point w ∈ D and a time tw > 0 such that
ϕ(tw, w) ∈ Nc. As A(xs ) is invariant, then w ∈ A(xs ). Therefore, w ∈ W c(p) ∩ A(xs ) and,
consequently, W c(p) ∩ A(xs ) �= ∅.

(2ii) (⇐=) Suppose that W s(p) ⊂ ∂ A(xs ). Since p ∈ W s(p), then p ∈ ∂ A(xs ).

(=⇒) Suppose now that p ∈ ∂ A(xs ). By item 2(i) of Theorem 4.2, we can conclude that

W c(p) ∩ A(xs ) �= ∅. Let y ∈ W c(p) ∩ A(xs ). Since y ∈ W c(p), then there is T < 0 such that
ϕ(T, y) ∈ W c

loc(p). Let z = ϕ(T, y). Since y ∈ A(xs ) and A(xs ) is invariant, then z ∈ A(xs ).
It follows that z ∈ W c

loc(p) ∩ A(xs ). Let B(z, ε) be an open ball of radius ε > 0 centered at z

where ε is an arbitrarily small number. Let q̂ be an arbitrary point of W s (p). In particular, for
some T > 0 we have q̃ = ϕ(T , q̂) ∈ W s

loc(p). Let S be a disk at point q̃ of dim S = 2 transverse
to W s

loc(p). By λ-lemma for non hyperbolic equilibrium points, see [6], there is a point w ∈ S

and a time tw > 0 such that ϕ(tw, w) ∈ B(z, ε). Since A(xs ) is invariant, then w ∈ A(xs ).
Since ε and the disk S can be chosen arbitrarily small, then there are points at A(xs ) arbitrarily
close to q̃ . Consequently, q̃ ∈ A(xs ). Since W s

loc(p) ∩ A(xs ) = ∅, then q̃ ∈ ∂ A(xs ). Since

∂ A(xs ) is invariant, q̂ = ϕ(−T , q̃) ∈ ∂ A(xs ). As the choice of q̂ at W s(p) was arbitrary, then
we can conclude that W s(p) ⊂ ∂ A(xs ).
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(3i) (⇐=) Suppose that W cu(p) ∩ A(xs ) �= ∅. Since A(xs ) ⊂ A(xs ), then (W cu
loc(p) \ {p}) ∩

A(xs ) �= ∅. Therefore, by item (ii) of Theorem 4.1, we have that p ∈ ∂ A(xs ).

(=⇒) Suppose that p ∈ ∂ A(xs ). By Theorem 4.1, we can conclude that (W cu
loc(p) \ {p}) ∩

A(xs ) �= ∅. Consequently, (W cu(p) \ {p}) ∩ A(xs ) �= ∅, since W cu
loc(p) ⊂ W cu(p). Let us

show, under assumptions (A1”), (A2”) and (A3) that (W cu(p) \ {p}) ∩ A(xs ) �= ∅ implies
W cu(p) ∩ A(xs ) �= ∅. Let q ∈ (W cu(p) \ {p}) ∩ A(xs ). If q ∈ A(xs ), then there is nothing
to be proved. Suppose that q ∈ ∂ A(xs ). From condition (A3), there is an equilibrium point

p̂ ∈ ∂ A(xs ) such that ϕ(t, q) → p̂ as t → +∞. By the dimension of the unstable manifold of
the equilibrium point, see [7], we can conclude that p̂ �= p. Then p̂ is a hyperbolic equilibrium
point or subcritical Hopf equilibrium point and we conclude that dim W cu( p̂) < dim W cu(p)

or dim W c( p̂) < dim W cu(p), if p̂ is a subcritical Hopf equilibrium point or dim W u( p̂) <

dim W cu(p), if p̂ is a hyperbolic equilibrium point, see [7]. If p̂ is a subcritical Hopf equilibrium
point, then dim W cu( p̂) < 3 or dim W c( p̂) < 3. It follows that dim W c( p̂) = 2, since the central

manifold of a subcritical Hopf equilibrium point has at least dimension 2. Therefore, by item
2(i) of Theorem 4.2, W c( p̂) ∩ A(xs ) �= ∅. Let y ∈ W c( p̂) ∩ A(xs ) and B(y, ε) be an open
ball of radius ε > 0 centered at y. Since A(xs ) is an open set, then B(y, ε) ⊂ A(xs ) for ε

suficiently small. Let Nc be a neighborhood of q at W cu(p). The neighborhood Nc contains
a transversal section D of W s( p̂) at the point q with dimension dim D = 2. By λ-lemma for
non hyperbolic equilibrium points, see [6], there is a point w ∈ D and a time tw > 0 such that

ϕ(tw, w) ∈ Nc. Since A(xs ) is invariant set, then w ∈ A(xs ). Therefore, w ∈ W cu(p) ∩ A(xs )

and, consequently, W cu(p) ∩ A(xs ) �= ∅.

If p̂ is a hyperbolic equilibrium point and, therefore, dim W u( p̂) < 3, it follows that dim
W u( p̂) = 1 or dim W u( p̂) = 2, since hyperbolic equilibrium points of type-zero can not belong

to the boundary of the stability region. Thus, by item 1(i) of Theorem 4.2, W u( p̂) ∩ A(xs ) �= ∅.
Let y ∈ W u( p̂) ∩ A(xs ) and B(y, ε) be an open ball of radius ε > 0 centered at y. Since A(xs )

is an open set, then B(y, ε) ⊂ A(xs ) for ε suficiently small. Let Nc be a neighborhood of q at

W cu(p). The neighborhood Nc contains a transversal section D of W s( p̂) at the point q with
dimension dim D = 2. By λ-lemma, see [6], there is a point w ∈ D and a time tw > 0 such that
ϕ(tw, w) ∈ Nc. Since A(xs ) is invariant set, then w ∈ A(xs ). Therefore, w ∈ W cu(p) ∩ A(xs )

and, consequently, W cu(p) ∩ A(xs ) �= ∅.

(3ii) (⇐=) Suppose that W s(p) ⊂ ∂ A(xs ). Since p ∈ W s(p), then p ∈ ∂ A(xs ).

(=⇒) Suppose that p ∈ ∂ A(xs ). By item 3(i) of Theorem 4.2, we can conclude that W cu(p) ∩
A(xs ) �= ∅. Let y ∈ W cu(p) ∩ A(xs ). Since y ∈ W cu(p), then there is T < 0 such that
ϕ(T, y) ∈ W cu

loc(p). Let z = ϕ(T, y). Since y ∈ A(xs ) and A(xs ) is invariant, then z ∈ A(xs ).
It follows that z ∈ W cu

loc(p) ∩ A(xs ). Let B(z, ε) be an open ball of radius ε > 0 centered at z

where ε is an arbitrarily small number. Let q̂ be an arbitrary point of W s(p). In particular, for
some T > 0 we have q̃ = ϕ(T , q̂) ∈ W s

loc(p). Let S be a disk at point q̃ of dim S = 3 transverse
to W s

loc(p). By λ-lemma for non hyperbolic equilibrium points, see [6], there is a point w ∈ S

and a time tw > 0 such that ϕ(tw, w) ∈ B(z, ε). Since A(xs ) is an invariant, then w ∈ A(xs ).
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Since ε and the disk S can be chosen arbitrarily small, then there are points at A(xs ) arbitrarily

close to q̃ . Consequently, q̃ ∈ A(xs ). Since W s
loc(p) ∩ A(xs ) = ∅, then q̃ ∈ ∂ A(xs ). Since

∂ A(xs ) is invariant, q̂ = ϕ(−T , q̃) ∈ ∂ A(xs ). As the choice of q̂ at W s(p) was arbitrary, then
we can conclude that W s(p) ⊂ ∂ A(xs ). �

The next theorem shows the characterization of hyperbolic and subcritical Hopf equilibrium

points on the boundary of stability region for type-k, with 1 ≤ k ≤ n − 2.

Theorem 4.3. (Type-k equilibrium points on ∂ A(xs )): Let A(xs ) be the stability region of an

asymptotically stable equilibrium point xs of (2.1) and suppose the assumptions (A1”), (A2”)
and (A3) are held. Let p be a type-k subcritical Hopf equilibrium point, with 1 ≤ k ≤ n − 2,
and x� be a type-k′ hyperbolic equilibrium point, with k′ ≤ n, of (2.1). Then

(i) p ∈ ∂ A(xs ) ⇐⇒ W cu(p) ∩ A(xs ) �= ∅
x� ∈ ∂ A(xs ) ⇐⇒ W u(x�) ∩ A(xs ) �= ∅

(ii) p ∈ ∂ A(xs ) ⇐⇒ W s(p) ⊂ ∂ A(xs )

x� ∈ ∂ A(xs ) ⇐⇒ W s(x�) ⊂ ∂ A(xs )

Proof. (i) (⇐=) The proof is analogous to the proof of the previous theorem and will be
omitted.

(=⇒) We will demonstrate the theorem by using finite induction on the dimension of W cu(x) or
W u(x) if x ∈ ∂ A(xs ) is a subcritical Hopf equilibrium point or hyperbolic equilibrium point. If

dim W u(x) = 1, then by Theorem 4.2 we know that W u(x)∩ A(xs ) �= ∅ or W cu(x)∩ A(xs ) �= ∅.
Suppose that W u(x) ∩ A(xs ) �= ∅ or W cu(x) ∩ A(xs ) �= ∅ for all equilibrium points x at
the boundary ∂ A(xs ) with dim W u(x) ≤ k. Now, we suppose that dim W u(x) = k + 1. By

Theorem 4.1 or Theorem 3.7 of [3], we can conclude that (W i
loc(x)\{x})∩ A(xs ) �= ∅, for i = cu

or i = u respectively. Consequently (W i (x) \ {x}) ∩ A(xs ) �= ∅, since W i
loc(x) ⊂ W i(x). Let us

show, under assumptions (A1”), (A2”) and (A3) that (W i (x)\{x})∩ A(xs ) �= ∅ implies W i (x)∩
A(xs ) �= ∅. Let q ∈ (W i (x)\{p})∩ A(xs ). If q ∈ A(xs ), there is nothing to be proved. Suppose

that q ∈ ∂ A(xs ). From condition (A3), there is an equilibrium point p̂ ∈ ∂ A(xs ) such that
ϕ(t, q) → p̂ as t → +∞. From (A1”), it is concluded that p̂ is a hyperbolic equilibrium point or
subcritical Hopf equilibrium point. By the dimension of the unstable manifold of the equilibrium

point, see [7], if x is a type-k hyperbolic equilibrium point or subcritical Hopf equilibrium point,
with 1 ≤ k ≤ n − 3, or a type-(n − 2) subcritical Hopf equilibrium point respectively, we
conclude that dim W j ( p̂) < dim W i (x), for j = u if p̂ is a hyperbolic equilibrium point or

j = cu if p̂ is a subcritical equilibrium point. Let p̂ be a hyperbolic equilibrium point. Since
dim W u( p̂) < dim W i (x), then we conclude that dim W u( p̂) ≤ k. Thus, by induction hypothesis
W u( p̂) ∩ A(xs ) �= ∅. Let y ∈ W u( p̂) ∩ A(xs ) and B(y, ε) be an open ball of radius ε > 0

centered at y. Since A(xs ) is an open set, then B(y, ε) ⊂ A(xs ) for ε suficiently small. Let Ni be
a neighborhood of q at W i (x). The neighborhood Ni contains a transversal section D of W s( p̂)

at the point q with dimension dim D ≤ k. By λ-lemma, see [6], there is a point w ∈ D and a
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time tw > 0 such that ϕ(tw, w) ∈ Ni . Since A(xs ) is a invariant, then w ∈ A(xs ). Therefore,

w ∈ W i (x) ∩ A(xs ) and, consequently, W i (x) ∩ A(xs ) �= ∅.

If p̂ is a subcritical Hopf equilibrium point and since dim W cu( p̂) < dim W i(x), then we also
conclude that dim W cu( p̂) ≤ k. Thus, by induction hypothesis W cu( p̂) ∩ A(xs ) �= ∅. Let y ∈
W cu( p̂) ∩ A(xs ) and B(y, ε) be an open ball of radius ε > 0 centered at y. Since A(xs ) is an

open set, then B(y, ε) ⊂ A(xs ) for ε suficiently small. Let Ni be a neighborhood of q at W i (x).
The neighborhood Ni contains a transversal section D of W s ( p̂) at the point q with dimension
dim D ≤ k. By λ-lemma for non hyperbolic equilibrium points, see [6], there is a point w ∈ D

and a time tw > 0 such that ϕ(tw, w) ∈ Ni . Since A(xs ) is an invariant, then w ∈ A(xs ). Thus,
w ∈ W i (x) ∩ A(xs ) and consequently, W i (x) ∩ A(xs ) �= ∅.

(ii) The proof is analogous to the proof of Theorem 4.2 and will be omitted. �

The next theorem provides a complete characterization of the boundary of the stability region
when there are subcritical Hopf equilibrium points in ∂ A(xs ).

Theorem 4.4. (Stability Boundary Characterization): Let xs be an asymptotically stable equi-

librium point of (2.1) and A(xs ) be its stability region. If assumptions (A1”) and (A3) are satis-
fied, then

∂ A(xs ) ⊂
⋃

i

W s(xi )
⋃

j

W s (p j )

where xi are the hyperbolic equilibrium points and p j are the subcritical Hopf equilibrium points
on ∂ A(xs ), i, j = 1, 2, . . .. If supposition (A2”) is satisfied, then

∂ A(xs ) =
⋃

i

W s(xi )
⋃

j

W s(p j ).

Proof. Let q ∈ ∂ A(xs ). By assumption (A3), we can assert that there is an equilibrium point
x such that ϕ(t, q) → x when t → +∞. By assumption (A1”), we can assert that x is either
a hyperbolic equilibrium point xi or a subcritical Hopf equilibrium point p j , namely x = xi

or x = p j for some i, j . Therefore, we conclude that q ∈ ⋃
i W s(xi )

⋃
j W s(p j ). Therefore,

∂ A(xs ) ⊂ ⋃
i W s(xi )

⋃
j W s (p j ). By Theorems 4.2 and 4.3, we know that W s(xi ) ⊂ ∂ A(xs )

and W s(p j ) ⊂ ∂ A(xs ). Thus,
⋃

i W s(xi )
⋃

j W s (p j ) ⊂ ∂ A(xs ) and, therefore,

∂ A(xs ) =
⋃

i

W s(xi )
⋃

j

W s(p j ). �

5 CONCLUSION

In this paper, we studied the characterization of the boundary of stability regions of nonlinear

dynamical autonomous systems in the presence of subcritical Hopf equilibrium points. Necessary
and sufficient conditions were offered for a hyperbolic equilibrium point and a Hopf subcritical
equilibrium point belonging to the boundary of the stability region. The characterization of the
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boundary of the stability region proposed in this paper is a generalization of the characterizations

in the literature allowing the presence of a particular type of non-hyperbolic equilibrium point on
the boundary of the stability region. Exploring the characterizations developed in this work, we
hope in the near future, to understand how the stability region behaves when local bifurcations

of type Hopf occur on the boundary of stability region.
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RESUMO. Uma caracterização completa da fronteira da região de estabilidade de uma

classe de sistemas dinâmicos autônomos não lineares é desenvolvida admitindo a existência

de pontos de equilı́brio não-hiperbólicos do tipo Hopf Subcrı́ticos na fronteira da região de

estabilidade. A caracterização da região de estabilidade neste trabalho é uma extensão da

caracterização já desenvolvida na literatura, que consideram somente ponto de equilı́brio

hiperbólico. Sob a condição de transversalidade, mostra-se que a fronteira da região de es-

tabilidade é composta pelas variedades estáveis de todos os pontos de equilı́brio na fronteira

da região de estabilidade, incluindo as variedades estáveis dos pontos de equilı́brio Hopf

Subcrı́ticos do tipo k, com 0 ≤ k ≤ n − 2, que pertencem à fronteira da região de estabili-

dade.

Palavras-chave: sistemas dinâmicos, sistemas não lineares, região de estabilidade, fronteira

da região de estabilidade, ponto de equilı́brio Hopf subcrı́tico.
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