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ABSTRACT. The hidden subgroup problem (HSP) plays an important role in quantum computing because
many quantum algorithms that are exponentially faster than classical algorithms are special cases of the
HSP. In this paper we show that there exists a new efficient quantum algorithm for the HSP on groups
ZN � Zqs where N is an integer with a special prime factorization, q prime number and s any positive
integer.
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1 INTRODUCTION

The most important problem in group theory in terms of quantum algorithms is called hidden
subgroup problem (HSP) [14]. The HSP can be described as follows: given a group G and a
function f : G → X on some set X such that f (x) = f (y) iff x · H = y · H for some subgroup

H , the problem consists in determining a generating set for H by querying the function f . We
say that the function f hides the subgroup H in G or that f separates the cosets of H in G. A
quantum algorithm for the HSP is said to be efficient when the running time is O(poly(log |G|)).
There are many examples of efficient quantum algorithms for the HSP in particular groups [17,
18]. It is known that for finite abelian groups, the HSP can be solved efficiently on a quantum
computer [14]. On the other hand, an efficient solution for a generic non-abelian group is not
known. Two important groups in this context are the symmetric and the dihedral groups. An

efficient algorithm for solving the HSP for the former group would imply in an efficient solution
for the graph isomorphism problem [1, 2, 12, 8] and for the latter one would solve instances of the
problem of finding the shortest vector in a lattice, which has applications in cryptography [16].

One way to design new quantum algorithms for the HSP is to investigate the structures of all

subgroups of a given group, and then to find a quantum algorithm applicable to each subgroup
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structure. Following this, Inui & Le Gall presented an efficient quantum algorithm for the HSP

on groups of the form Zpr � Zp with prime p and positive integer r[13]. Later, Cosme [6]
presented an efficient quantum algorithm for the HSP in Zpr �φ Zps where p is any odd prime
number, r and s are positives integers and the homomorphism φ is given by the root t pr−s+l + 1

such that r ≥ 2s − l. Subsequently, in [10] the authors presented an efficient quantum algorithm
for the HSP inZp�Zqs , with p/q = poly(log p), where p, q are distinct odd prime numbers and
s is an arbitrary positive integer. The case Zpr � Zqs with p, q distinct odd prime numbers and

r, s > 0 such that pr/qt = poly(log pr ) was discussed in [11]. The parameter t ∈ {0, 1, . . . , s}
characterizes the group. The case t = 0 reduces to the abelian group Zpr × Zqs and the case
t = 1 was addressed by the authors, with unsuccessful results. This work established, for the

first time, a complete description of the structure of the subgroups of Zpr �Zqs . Recently, using
the algebraic structure of the subgroups of Zpr � Zqs , van Dam & Dey [7] presented a new
quantum algorithm for the HSP over Zpr � Zqs for all possible values of t ∈ {0, 1, . . . , s} by
imposing a restriction on the parameters p and q: the relative sizes of subgroups are bounded by

pr/qt− j ∈ O(poly(log pr )), where j ∈ {0, . . . , t − 1}.
In this article, we describe a new efficient quantum algorithm to solve the HSP in the specific
class of non-abelian groups, i.e., the semi-direct product groups of the form G = ZN � Zqs ,
where, N is factorized as pr1

1 . . . prn
n and there exists a 1 ≤ k ≤ n such that qt (q odd prime)

divides pk − 1 and q does not divide pi − 1 for all i �= k. The parameter t is related to the type
of the homomorphism that describes the group, as can be checked in Section 3. Using a similar
approach presented in [5], we define an isomorphism between ZN � Zqs and the direct product

of Zpr �ψ Zqs with cyclic groups, reducing the HSP in G to similar HSPs, solutions which are
already known.

This work is organized as follows: In Section 2, we review some fundamental notations and
definitions of finite groups. In Section 3, we give the relevant definitions and results concerning

the semi-direct product groups and explain its homomorphisms and their properties. In Section 4,
we present our main result and we show that there exist an efficient quantum algorithm for the
HSP in the groups. In Section 5, we draw our conclusions.

2 PRELIMINARIES

We begin by reviewing some fundamental notations and definitions of finite groups that will be
used throughout the text. More details can be found in lots of textbooks of abstract algebra such
as in [3, 9].

Let G be a finite group. We use |G| to denote the order of G. A nonempty subset H of a group
G is called a subgroup of G, denoted by H ≤ G, if H 2 ⊆ H and H−1 ⊆ H , where H 2 =
{h1h2|h1, h2 ∈ H } and H−1 = {h−1|h ∈ H }. For a subgroup H of G and every group element

g ∈ G, the left coset of H determined by g is the set g H = {gh, h ∈ H }.
Let M be a set of elements in G. The intersection of all subgroups of G containing M is called
the subgroup generated by M , denoted by 〈M〉. If 〈M〉 = G, M is said to be a generating set of
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G or G is generated by M . A group generated by one element is called a cyclic group. For an

element g ∈ G, we call the order of the subgroup 〈g〉 the order of g, denoted by ord(g), that is,
ord(g) = | 〈g〉 |. One can show that ord(g) is the smallest positive integer n satisfying gn = 1.

Given two groups G and H , a map α : G → H is called a homomorphism of G into H if

α(ab) = α(a)α(b), ∀ a, b ∈ G.

If the homomorphism α is a bijection, then α is an isomorphism from G onto H . In this case,
G and H are said to be isomorphic, denoted by G ∼= H . An isomorphism from G to itself is
called an automorphism of G. We use Aut(G) to denote the set of automorphism of G. For the
composition of maps, Aut(G) is a group, called the automorphism group of G.

A subgroup N of a group G is called normal, denoted by N � G if Ng = g N , ∀ g ∈ G. The
group nZ, for any integer n, is a normal subgroup of the integer group Z. The factor group
Zn = Z/nZ = {0, 1, . . . , n − 1} is called the (additive) group of integers modulo n. In this

group, (nZ)a.(nZ)b = (nZ)c if and only if a + b = c (mod n). The unit group, denoted by
Z∗

n , for any positive integer n, is the group of invertible integers mod n (i.e, those a ∈ Zn with
gcd(a, n) = 1).

The direct product of two groups G and H , denoted by G × H , is the set {(g, h)|g ∈ G, h ∈ H },
where the multiplication operation is defined by (g, h)(g′, h′) = (gg′, hh′) for all g, g′ ∈ G
and h, h′ ∈ H . In the same way, one may define the direct product of n groups G1, . . . ,Gn as
G = G1 × . . .× Gn .

3 SEMI-DIRECT PRODUCT GROUPS

The semi-direct product of two groups G and H is defined by a homomorphism φ : H →
Aut(G). The semi-direct product G �φ H is the set {(g, h) : g ∈ G, h ∈ H } with the group
operation defined as (g, h)(g′, h′) = (g +φ(h)(g′), h +h′). One can easily check that the group

inversion operation satisfies (g, h)−1 = (φ(−h)(−h),−h).

In this paper we consider the HSP on the semi-direct product groups G = ZN �φ Zqs for
positive integers N and s and odd prime number q . We assume that the prime factorization of
N is pr1

1 . . . prn
n and there exists a 1 ≤ k ≤ n such that qt divides pk − 1 and q does not divide

pi − 1 for all i �= k. The parameter t ∈ {0, 1, . . . , s} characterizes the group as shown in the
following.

The elements x = (1, 0) and y = (0, 1) generate the groups ZN �φ Zqs . Since Aut(ZN ) is
isomorphic to Z∗

N , the homomorphism φ is completely determined by α := φ(1)(1) ∈ Z∗
N and

φ(b)(a) = aαb for all a ∈ ZN and b ∈ Zqs . Now, note that φ(0) = φ(qs) : ZN → ZN

is the identity element of the group Aut(ZN ). Then αqs = φ(qs)(1) = 1. If the element α ∈
Z∗

N satisfies the congruence relation X qs = 1 mod N , then it defines the semi-direct product

ZN �α Zqs . In this case, we must have ord(α) = qt for some integer 0 ≤ t ≤ s. The case t = 0
reduces to the direct product ZN × Zqs , which is an abelian group. An efficient solution for the
HSP is known for this case [14]. Since α ∈ Z∗

N , qt divides |Z∗
N | = ϕ(N), where ϕ is the Euler

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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phi-function [9]. Since ϕ(N) = pr1−1
1 . . . prn −1

n (p1 − 1) . . . (pn − 1), we can choose the option
qt | pn − 1 with no loss of generality.

For instance, let G = ZN �φ Zqs , with N = 45125, q = 3 and s = 4. The homomorphism

φ can be described by an element α = 2626 ∈ Z∗
N with order 32. Since 45125 = 192.53, the

order of α satisfies 32|(19 − 1) and 3 � (5 − 1). Then G is an example of group for which the
Theorem 4.1 holds.

Let us consider the usual decompositionZN ∼= Zp
r1
1

× . . .×Zprn
n

, which can be found in quantum

polynomial time [4]. Thus, the following isomorphism holds

ZN �φ Zqs ∼= (Zp
r1
1

× . . .× Zprn
n
)�φ Zqs . (3.1)

The elements of (Zp
r1
1

×. . .×Zprn
n
)�φ Zqs have the form ((a1, . . . , an), b), where (a1, . . . , an) ∈

Zp
r1
1

× . . . × Zprn
n

and b ∈ Zqs . For each b in Zqs the element φ(b) is an automorphism on

Zp
r1
1

× . . .×Zprn
n

such that α = φ(1)(1) is an element inZ∗
p

r1
1

× . . .×Z∗
prn

n
of order qt . Note that

Zp
ri
i

is isomorphic to the subgroup I1 × Zp
ri
i

× I2 of Zp
r1
1

× . . .× Zprn
n

, where I1 is the identity
on Zp

r1
1

× . . .× Z
p

ri−1
i−1

and I2 is the identity on

Z
p

ri+1
i+1

× . . . × Zprn
n
, for all i = 1, . . . , n.

Thus, we can identify an element ai in Zp
ri
i

with the point ai in I1 ×Zp
ri
i

× I2 such that it has an

integer value ai in the i-th coordinate and 0′s elsewhere.

Now we are ready to state the following results.

Lemma 3.1. Let Zp
r1
1

× . . . × Zprn
n

and Zqs be finite abelian groups with distinct odd prime
numbers p1, . . . , pn, q and positive integers r1, . . . , rn and s. Define the semi-direct product

group (Zp
r1
1

× . . .×Zprn
n
)�φ Zqs . Then, for each b ∈ Zqs and ai ∈ Zp

ri
i

there exists a ci ∈ Zp
ri
i

such that φ(b)(ai ) = ci .

Proof. Let ei be elements in Zp
r1
1

× . . .× Zprn
n

with all components equal zero except the i-th

one which is 1. Because φ(b) ∈ Aut(ZN ), it is enough to show that φ(b)(ei ) = di , for some
di ∈ Zp

ri
i

. In fact, φ(b)(ai ) = φ(b)(ai ei ) = aiφ(b)(ei ) = aidi = ci , for some ci ∈ Zp
ri
i

.

Now let us suppose that φ(b)(ei ) = (d1, . . . , dn). Note that

(0, . . . , 0) = φ(b)(0, . . . , 0) = φ(b)(0, . . . , 0, pri
i , 0, . . . , 0)

= pri
i φ(b)(ei ) = (pri

i d1, . . . , pri
i dn).

Then, for all j = 1, . . . , n we have pri
i d j ≡ 0 mod p

r j
j and this implies that d j ≡ 0 mod p

r j
j

for all j �= i. Hence, φ(b)(ei ) = (0 . . . , di , 0, . . . , 0) = di as was to be shown. �

The next lemma shows that there exists an isomorphism between ZN �α Zqs and the non-abelian
group Zprn

n
� Zqs with cyclic groups.

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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Lemma 3.2. Let N be a positive integer with prime factorization pr1
1 . . . prn

n and q an odd prime

such that q �= pi and s a positive integer. Define the semi-direct product group G = ZN �α Zqs

for an α ∈ Z∗
N . Let t ∈ {1, . . . , s} be the smallest positive integer such that αqt = 1. Let us

assume that there exists a 1 ≤ k ≤ n such that qt | pk − 1 and q � pi − 1 for all i �= k. By

choosing k = n (WLOG) we have

ZN �φ Zqs ∼= (Zp
r1
1

× . . .× Zp
rn−1
n−1

)× (Zpr �ψ Zqs ), (3.2)

for some homomorphism ψ from Zqs into the group of automorphisms of Zpr and p = pn and
r = rn .

Proof. Note that φ(qs) is the identity map I on Zp
r1
1

× . . . × Zprn
n

. For all i = 1, . . . , n − 1,

follows from Lemma 3.1 that ei = φ(qs )(ei ) = (0 . . . , ci
qs
, . . . , 0). Then ci

qs = 1 mod pri
i ,

which implies that ci is an element in Z∗
p

ri
i

with order qt ′ , for some t ′ ∈ {1, . . . , s}. Let us

suppose ci �= 1. Since qt ′ divides the order of Z∗
p

ri
i

and gcd(pi , q) = 1, we have that qt ′ divides

pi −1. But that leads to an absurd, hence ci must be 1 and φ acts trivially on Zp
r1
1

× . . .×Z
p

rn−1
n−1

.

Thus, there exists a homomorphismψ fromZqs into the group of automorphisms ofZpr (p = pn

and r = rn ), such that for all b ∈ Zqs and all (a1, . . . , an) ∈ Zp
r1
1

× . . .× Zprn
n

we have

φ(b)(a1, . . . , an) = (a1, . . . , an−1, ψ(b)(an)). (3.3)

Now for two elements g = ((a1 . . . , an), b) and g′ = ((a′
1 . . . , a′

n), b′) in (Zp
r1
1

× . . .×Zprn
n
)�φ

Zqs , the group operation is defined by

gg′ = ((a1, . . . , an)+ φ(b)(a′
1, . . . , a′

n), b + b′)

= (a1 + a′
1, . . . , an−1 + a′

n−1, an + ψ(b)(a′
n), b + b′). (3.4)

Define the map

� : ZN �φ Zqs → (Zp
r1
1

× . . . × Zp
rn−1
n−1

)× (Zpr �ψ Zqs ), (3.5)

such that �(a1, . . . , an, b)) = ((a1, . . . , an−1), (an , b)). The group operation in Zpr �ψ Zqs is
(a, b)(c, d) = (a + ψ(b)(c), b + d) for all a, c ∈ Zpr and b, d ∈ Zs

q . Note that

�(gg′) = �(a1 + a′
1, . . . , an−1 + a′

n−1, an + ψ(b)(a′
n), b + b′)

= ((a1 + a′
1, . . . , an−1 + a′

n−1), (an + ψ(b)(a′
n), b + b′)︸ ︷︷ ︸

(an,b).ψ(a′
n,b′)

)

= ((a1, . . . , an−1), (an , b))((a′
1, . . . , a′

n−1), (a
′
n , b′))

= �(g)�(g′). (3.6)

Thus, � is an group homomorphism. One can easily see that � is injective and from the fact
that |ZN �φ Zqs | = |(Zp

r1
1

× . . . × Zp
rn−1
n−1

) × (Zpr �ψ Zqs )| = Nqs we have that � is an

isomorphism. �

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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Lemma 3.3. Let G1 and G2 be finite groups with relatively prime orders. If H is a subgroup of

G then H = H1 × H2 for some subgroups H1 of G1 and H2 of G2.

Proof. Let πi : G1 × G2 → Gi such that πi (g1, g2) = gi , i = 1, 2. For any subgroup H
of G1 × G2 define H1 = π1(H ) ≤ G1 and H2 = π2(H ) ≤ G2. Then H ≤ H1 × H2. We
claim that H = H1 × H2. In fact, if (h1, h2) ∈ H1 × H2 it follows from definition of H1 and

H2 that there exists h′
1 ∈ G1 and h′

2 ∈ G2 such that (h1, h′
2), (h

′
1, h2) ∈ H . From the fact that

gcd(|G1|, |G2|) = 1 and by the Chinese remainder theorem [9], there exist integers r1 and r2

such that {
r1 ≡ 1 mod |G1|
r1 ≡ 0 mod |G2|

and

{
r2 ≡ 0 mod |G1|
r2 ≡ 1 mod |G2|.

(3.7)

It follows from (3.7) that there are integers k1 , k2, k3, k4 such that{
r1 = k1|G1| + 1

r1 = k2|G2|
and

{
r2 = k3|G1|
r2 = k4|G2| + 1.

Thus,

(h1, h′
2)

r1 = (hr1
1 , h′r1

2 ) = (hk1 |G1 |+1
1 , h′k2|G2 |

2 ) = (h1, e2) ∈ H

(h′
1, h2)

r2 = (h′r2
1 , hr2

2 ) = (h′k3 |G1 |
1 , hk4|G2 |+1

2 ) = (e1, h2) ∈ H

where e1 and e2 are the identities elements in the groups G1 and G2, respectively. Hence,
(h1, h2) = (h1, e2)(e1, h2) ∈ H . �

4 QUANTUM ALGORITHM FOR HSP IN ZN �φ Zqs

In this section we present an efficient quantum algorithm that can solve the HSP in ZN �φ Zqs ,

where N is factorized as N = pr1
1 . . . prn

n and given a 1 ≤ t ≤ s, there exists a 1 ≤ k ≤ n such
that qt | pk − 1 and q � pi − 1 for all i �= k.

Before stating our main theorem, let us introduce the last two intermediate results.

Proposition 4.1. Let G be a finite group, H a subgroup of G and f : G → X the oracle function
that hides H in G. For any subgroup G̃ of G we have f̃ = f

∣∣∣
G̃

: G̃ → X hides H̃ = H ∩ G̃

in G̃.

Proof. We must show that f̃ (a) = f̃ (b) if and only if a H̃ = bH̃ , for all a, b ∈ G̃. In fact, let
a, b ∈ G̃ such that f̃ (a) = f̃ (b). Since f hides H in G, a H = bH which implies a = bh, for
some h ∈ H . Since a, b ∈ G̃, we have h = b−1a ∈ G̃ which implies h ∈ H̃ , hence a H̃ = bH̃ .

Conversely, if a H̃ = bH̃ , since a H̃ ⊂ a H and bH̃ ⊂ bH we have a H ∩ bH �= ∅ which implies
a H = bH , or equivalently f̃ (a) = f̃ (b). �

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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Although the Proposition 4.1 establish a very simple result to be verified, it has important appli-

cations in solving the HSP. In fact, if there exists a subgroup G̃ of G where the HSP can solved
efficiently by a quantum computer, the Proposition 4.1 shows that is possible to obtain informa-
tion about H by using the restriction of the hiding function f to the subgroup H̃ = H ∩ G̃. Note

that if H ⊂ G̃ then the problem is completely solved.

An important consequence of the Proposition 4.1 follows below:

Corollary 4.1. Let G1 and G2 be finite groups with relatively prime orders. Then, an efficient
solution to the HSP over G1 and G2 implies in an efficient solution to the HSP over the direct
product G1 × G2 .

Proof. By Lemma 3.3, if H is a subgroup of G1 × G2 then H = H1 × H2 for some subgroup

H1 of G1 and subgroup H2 of G2. Let f be the oracle function that hides H in G1 × G2. By
Proposition 4.1, the restrictions of f to G1 and G2 hide, respectively, H1 and H2. Since the HSP
can solved efficiently over the groups G1 and G2 one can efficiently find generators to H1 and

H2, or equivalently, generators to H1 × H2. �

Now we are able to state and prove our main result.

Theorem 4.1. Let N be a positive integer with prime factorization pr1
1 . . . prn

n , q an odd prime
such that q �= pi and s a positive integer. Define the semi-direct product group G = ZN �α Zqs

for an α ∈ Z∗
N . Let t ∈ {1, . . . , s} be the smallest positive integer such that αqt = 1. Let us

assume that there exists a 1 ≤ k ≤ n such that qt | pk − 1 and q � pi − 1 for all i �= k. Then
there exists an efficient quantum algorithm that solves the HSP in the semi-direct product groups
ZN �α Zqs .

Proof. Define N ′ = N/prn
n then Zp

r1
1

× . . .× Z
p

rn−1
n−1

∼= ZN ′ . By Lemma 3.2,

ZN �φ Zqs ∼= ZN ′ × (Zpr �ψ Zqs ).

The groupZN ′ is an abelian and the HSP can be solved efficiently for abelian groups by quantum
computers [14]. On the other hand, the group Zpr �ψ Zqs was addressed in [10, 11] and recently

generalized by [7]. Since the order of ZN ′ is relatively prime to order of the group Zpr �ψ Zqs ,
by Corollary 4.1, the HSP over ZN � Zqs can be solved efficiently on a quantum computer. �

A series of efficient quantum algorithms for the non-abelian HSP over semi-direct product groups
have been discovered. Among these, is the algorithm presented by Inui & Le Gall for groups of
the form Zpr � Zp with prime p and positive integer r, which uses enumeration of subgroups

and blackbox techniques. Chi, Kim & Lee [5] extended the algorithm to the case ZN � Zp,
where N is factored as N = pr1

1 . . . prn
n , and p prime does not divide each p j − 1. The idea is

to use a factorization of N to factor out the group and then apply Inui & Le Gall’s algorithm.

Later, Cosme [6] solved the case Zpr �φ Zps where p is any odd prime number, r and s are

Tend. Mat. Apl. Comput., 18, N. 2 (2017)
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positives. Using a similar approach of [5], they extended their algorithm to the class ZN �φ Zps .

In [10], the authors presented an efficient quantum algorithm for the HSP over certain metacyclic
groups Zp � Zqs , with p/q = poly(log p), where p, q are distinct odd prime numbers and s is
an arbitrary positive integer. This work was extended in [7], which developed an efficient HSP

algorithm in Zpr � Zqs , with p, q distinct odd prime numbers and r, s positive integers.

All those class of groups are special cases of the semi-direct products ZM �ZN , for any positive
integers M and N . In this sense, our result increases the number of groups in this family for
which efficient solutions are known.

We hope that these ideas will be useful for the understanding of the complexity of the HSP over

semi-direct product groups and lead to new algorithms for other non-Abelian HSP instances.

5 CONCLUSION

We have addressed the HSP on the semi-direct product groups G = ZN � Zqs where N is
factorized as N = pr1

1 . . . prn
n and given a 1 ≤ t ≤ s, there exists a 1 ≤ k ≤ n such that qt

divides pk − 1 q � pi − 1 for all i �= k. By employing an isomorphism between ZN � Zqs and
the direct product of Zpr �ψ Zqs with cyclic groups we have shown that the HSP can be reduced
to similar HSPs the solutions of which are already known. This provides a new efficient solution

for the HSP on G.
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RESUMO. O problema do subgrupo oculto (PSO) tem um papel importante na computação

quântica pois muitos algoritmos quânticos que são exponencialmente mais rápidos que seus

equivalentes clássicos são casos especiais do PSO. Neste artigo nós mostramos a existência

de um novo algoritmo quântico eficiente para o PSO sobre grupos da forma ZN �Zqs , onde

N é um número inteiro positivo com uma particular decomposição em fatores primos, q um

número primo e s um inteiro positivo qualquer.

Palavras-chave: Algoritmos quânticos, problema do subgrupo oculto, teoria de grupos

computacional.
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