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1. Introduction and Formulation of the Problem

In many situations, practical or theoretical, finite dimensional spaces are not the
most suitable ones in order to model or study a given problem. Alike, oftentimes,
scalar objective programming is not the most appropriate scenario. Therefore the
development of optimality conditions for vectorial abstract programming problems
is of great importance.

The role of nonsmooth analysis is of notable importance in the optimization the-
ory. This is due at least to the following reasons. First, in practice, differentiability
assumptions may be too restrictive. Second, as pointed by Cominetti and Correa [8],
there are many usual techniques commonly employed in optimization that generate
“nonsmoothness” even when the problems are differentiable. This arises, for exam-
ple, in duality theory, sensitivity and stability analysis, decomposition techniques,
penalty methods, among others.

With respect to necessary optimality conditions without differentiability, one can
resort to those of Fritz John or Kuhn-Tucker type, which are obtained under various
generalized derivatives concepts, or to saddle point conditions, where no differen-
tiability assumption is required. Still on necessary conditions, we should mention
the second order ones, that can also be obtained through generalized (second order)
derivatives. Now, on sufficient conditions, there are those based on convexity or
generalized convexity and second order type conditions. Both can be addressed in
nondifferentiable frameworks.

In the last years, an extended differentiability theory has been developed through
various concepts of generalized differentiability and first order optimality conditions
to the problem of scalar optimization have been established (see Clarke [7] and
Rockafellar [18]).

Also, a significant theory of generalized second order differentiability has been
developed (see, for example, Aubin and Ekeland [1], Chaney [5] and Hiriart-Urruty
[12]). In particular, Cominetti and Correa introduced in [8] the notions of second
order directional derivative and generalized Hessian and gave some second order
optimality conditions for an abstract scalar minimization problem.

We now cite some few works concerning the topics aforementioned. Multiplier
rules of Fritz John and Kuhn-Tucker types were studied, for example, in Bellaassali
and Jourani [3], Da Cunha and Polak [10], Jahn [14] and Dos Santos et al. [19].
Saddle point conditions were investigated, for instance, in Bigi [4] and Chen et al.
[6]. Bigi characterized saddle points assuming convex data and Chen et al. used a
distinct type of generalized convexity. Second order conditions were explored, more
recently, in Gfrerer [11] and Taa [20]. In [11], the results were obtained by making
use of Hadamard derivatives. In [20] abstract problems are considered, but under
twice differentiability.

The reader who is interested in a more comprehensive bibliography review on
these issues can consult the articles just quoted, which provide fine lists of references.

The aim of this paper is to contribute to the development of the optimality con-
ditions theory of nondifferentiable nonlinear abstract multiobjective optimization.



Saddle Point and Second Order Optimality 181

At first, we will consider a vector optimization problem which can be posed as

minimize f(x)
subject to g(x) ∈ −K,

x ∈ S,

(P)

where f : S ⊆ E → F and g : S ⊆ E → G are given (not necessarily differentiable)
functions, S is a nonempty subset of E and E,F and G are Banach spaces. The
spaces F and G are ordered by closed convex cones Q ⊂ F and K ⊂ G. Also, we
assume that Q has nonempty interior.

We denote by F the feasible set of (P), in the way that

F := {x ∈ S : g(x) ∈ −K}.

We will consider the so called weakly efficient solutions of (P). We recall that
x̄ ∈ F is said to be a weakly efficient solution (respectively, local weakly efficient

solution) of (P) if there does not exist x feasible for (P) such that f(x) − f(x̄) ∈
−intQ (respectively, if there exists a neighborhood V of x̄ such that there does not
exist x ∈ V ∩ F such that f(x)− f(x̄) ∈ −intQ).

Following Osuna-Gómez et al. [17], we give a definition of saddle points which
has the feature of being based on solving scalar problems and not vector ones, as
usual. We, then, show that every point that satisfies our definition is a weakly
efficient solution. The converse is also obtained, but under a generalized convexity
assumption and when (P) satisfies a constraint qualification. Subsequently, we will
apply these results to the (finite-dimensional) particular case when Q = R

p
+ and

K = R
m
+ :

minimize f(x) := (f1(x), ..., fp(x))
subject to gi(x) ≤ 0, i = 1, ...,m,

x ∈ S,

(PF)

where fj , gi : S ⊆ X → R, j ∈ J := {1, ..., p}, i ∈ I := {1, ...,m}, are continuous
and Gâteaux differentiable functions and S is a nonempty open subset of a Banach
space X . We obtain second order conditions for the nonsmooth finite-dimensional
problem (PF) in terms of second order directional derivatives (see Cominetti and
Correa [8]).

This work is divided in three more sections. In the next section, we recall some
results on generalized subconvex-like functions and an alternative theorem; also we
recall some generalized directional derivative and Hessian properties, introduced by
Cominetti and Correa in [8]. In Section 3. we establish saddle point type theorems
for the vectorial optimization problem (P) and, finally in Section 4., we use these
results to obtain second order conditions for problem (PF).

2. Preliminaries

This section is devoted to present some definitions and auxiliary results, which will
be useful in the next sections. In the sequel a definition and a technical lemma
concerning dual cones are stated. Then we have two subsections, being the first
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one about the notion of generalized subconvex-like functions and a Gordan type
theorem of the alternative for this sort of functions. In the second one, the concept
of second order generalized derivatives is defined and some related results are given.

Let X be a locally convex topological vector space. X∗ denotes the (topological)
dual of X and 〈·, ·〉 the canonical bilinear (duality) form between X and X∗.

Definition 2.1. The dual cone (or polar cone) of a set Q ⊂ X is defined as the
convex cone

Q∗ := {f ∈ X∗ : 〈f, x〉 ≥ 0 ∀ x ∈ Q}.

Lemma 2.1. Let F be a Banach space and Q ⊂ F a closed convex cone. Then

〈f, x〉 > 0 ∀ f ∈ Q∗ \ {0}, ∀ x ∈ intQ.

The proof can be found in Craven [9].

2.1. Generalized subconvex-like functions and a Gordan type

alternative theorem

Convexity and generalized convexity are very important concepts in optimization
theory. One reason for this importance is that for these classes of functions it
is possible to establish alternative theorems and consequently to obtain necessary
and/or sufficient optimality conditions. The generalized convexity notion that we
will use here is the generalized subconvex-like functions, which was introduced by
Xinmin Yang in [21], where the author showed that these functions satisfy a Gordan
type alternative theorem. He also showed that the generalized subconvex-like class
of functions comprise subconvex-like, convex-like and convex class of functions.
Thus the generalized subconvex-like is a large class of functions which satisfy a
Gordan type alternative theorem.

Definition 2.2. Let E and F be normed spaces, S0 a nonempty subset of E, Q ⊂ F

a convex set with nonempty interior, and f : S0 ⊂ E → F . We say that f is a
generalized subconvex-like function if there exists u ∈ intQ such that for each
α ∈ (0, 1) and arbitrary x1, x2 ∈ S0 and ε > 0, there exist x3 ∈ S0 and ρ > 0 such
that

εu+ αf(x1) + (1 − α)f(x2)− ρf(x3) ∈ Q.

The class of the generalized subconvex-like functions satisfies the following al-
ternative theorem (see [21], p. 128-130):

Theorem 2.1 (Generalized Alternative Theorem). Let E and F be two Banach
spaces, Q ⊂ F a convex cone with nonempty interior and S ⊂ E nonempty. Assume
that f : S → F is generalized subconvex-like. Then, exactly one of the following
statements is consistent:

a) There exists x ∈ S such that −f(x) ∈ intQ;

b) There exists s∗ ∈ Q∗ \ {0} such that 〈s∗, f(x)〉 ≥ 0 ∀ x ∈ S.
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2.2. Second order generalized derivative and the generalized

Hessian

In this subsection we recall some results concerning the generalized second order
derivative and the generalized Hessian. We start giving its definitions. Then, cer-
tain important classes of funtions are introduced. The section is closed with two
propositions, where topological properties of the generalized derivative and a sec-
ond order Taylor type expansion are exhibited. For more details, see Cominetti and
Correa [8].

In the following, X is a locally convex topological vector space.

Definition 2.3. The generalized second order directional derivative of a function
f : X → R at x ∈ X in the directions (u, v) ∈ X ×X is defined by

f◦◦(x;u, v) := lim sup
y→x

t,s↓0

f(y + su+ tv)− f(y + su)− f(y + tv) + f(y)

st

and the generalized Hessian of f at x is the multifunction ∂2f(x) : X ⇉ X∗ given
by

∂2f(x)(u) := {x∗ ∈ X∗ : 〈x∗, v〉 ≤ f◦◦(x;u, v) ∀ v ∈ X}.

In order to obtain continuity properties for generalized Hessian it is necessary
to define the following classes of functions:

Definition 2.4. A function f : X → R is twice C-differentiable in x if f◦◦(x;u, ·)
is lower semicontinuous (l.s.c.), for each u ∈ X.

Definition 2.5. We say that f : X → R is twice locally Lipschitz at x if for each
v ∈ X there exist a neighborhood V of x and a neighborhood U of zero such that the
set f◦◦(V ;U, v) is bounded in R.

If the boundedness of f◦◦(V ;U, v) is uniform in v, that is, if there exist neigh-
borhoods V of x and U of zero such that f◦◦(V ;U,U) is bounded in R, then we say
that f is twice uniformly locally Lipschitzian at x.

In [8] it is proved that if f : X → R is twice locally Lipschitz at x, then f is twice
C-differentiable at every point of V , where V is chosen as in the last definition.

Definition 2.6. Let Y, Z be topological vector spaces and A : Y ⇉ Z be a multi-
function. We say that A is locally compact at y ∈ Y if there exists a neighborhood
V of y such that A(V ) =

⋃
y′∈V

A(y′) is relatively compact.

We say that A is closed at y if for each net yα → y and zα → z with zα ∈
A(yα) ∀ α, we have z ∈ A(y).

If A is locally compact and closed at y, we say that A is upper semicontinuous

(u.s.c.) at y.

An important class of twice uniformly locally Lipschitzian functions is defined
below.

Definition 2.7. We say that f : X → R is a C1,1−function if it is Gâteaux-
differentiable and the (Gâteaux) derivative ∇f is locally Lipschitz.



184 Santos, Rojas-Medar e Oliveira

Proposition 2.1 (Cominetti and Correa [8]). Assume that f : X → R is twice
locally Lipschitz at x. Then, for each u ∈ X, the following assertions are satisfied:

(a) ∂2f(·)(u) is locally w*-compact and ∂2f(x)(u) is w*-compact;

(b) f◦◦(·; ·, v) is u.s.c., for each v ∈ X and ∂2f(·)(·) is closed;

(c) If f is C1,1, then ∂2f(·)(·) is locally w*-compact.

The following proposition is a version of the second order Taylor expansion for
twice C-differentiable functions.

Proposition 2.2 (Cominetti and Correa [8]). Let f : X → R be a continu-
ously Gateaux-differentiable function and twice C-differentiable in the closed seg-
ment [x, y] ⊂ X. Then, there exists ξ in the open segment ]x, y[ such that

f(y) ∈ f(x) + 〈∇f(x), y − x〉+
1

2
〈∂2f(ξ)(y − x), y − x〉

and the closure is unnecessary when f is C1,1.

3. Saddle Point Type Conditions

Following the guidelines of Kuhn-Tucker and Fritz-John, we characterize weakly
efficient solutions of problem (P) in terms of saddle point type conditions. Here we
give a saddle point definition to the problem of vector optimization, which is based
on solving scalar problems, instead of vector ones like the most existing definitions
in the literature. In other words, such a definition has the property of not involving
the resolution of a multiobjective problem. Furthermore, our definition generalizes
the one introduced in Osuna-Gómez et al. [17] for the corresponding case, when
(P) is stated in a finite-dimensional setting.

Definition 3.1. We say that (x̄, r̄, v̄) ∈ E ×F ∗ ×G∗ is a multiple saddle point for
the problem (P) if

r̄ ◦ f(x̄) + v ◦ g(x̄) ≤ r̄ ◦ f(x̄) + v̄ ◦ g(x̄) ≤ r̄ ◦ f(x) + v̄ ◦ g(x) (3.1)

∀ v ∈ K∗, ∀ x ∈ S and if (r̄, v̄) ∈ Q∗ ×K∗, r̄ 6= 0.

As in the classical case, if (x̄, r̄, v̄) is a multiple saddle point, then x̄ is a weakly
efficient solution of (P). Before we prove this assertion we need the following auxil-
iary result:

Lemma 3.1. Let E,F be two Banach spaces. Assume that F is ordered by the
convex cone Q ⊂ F with nonempty interior and let f : Γ ⊂ E → F . Consider the
vectorial optimization problem:

minimize f(x)
subject to x ∈ Γ.

(P̂)
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If there exists r̄ ∈ Q∗ \ {0} such that x̄ ∈ Γ is a solution of

minimize r̄ ◦ f(x)
subject to x ∈ Γ,

(P̂(r̄))

then x̄ is a weakly efficient solution of (P̂).

Proof. Suppose that x̄ ∈ Γ is not a weakly efficient solution of (P̂). In this case,
there exists x ∈ Γ such that f(x) <Q f(x̄), that is, f(x̄) − f(x) ∈ intQ. Since
r̄ ∈ Q∗ \ {0}, by Lemma 2.1, we have r̄(f(x̄)− f(x)) > 0 and, by linearity of r̄, we
have

r̄ ◦ f(x̄) > r̄ ◦ f(x),

which is a contradiction.

Theorem 3.1. If (x̄, r̄, v̄) is a multiple saddle point, then x̄ is a weakly efficient
solution of (P).

Proof. By Lemma 3.1, it is enough to show that x̄ is a solution of the problem

minimize r̄ ◦ f(x)
subject to x ∈ F,

where F := {x ∈ S : −g(x) ∈ K}. Since (x̄, r̄, v̄) is a multiple saddle point, we have

r̄ ◦ f(x̄) + v ◦ g(x̄) ≤ r̄ ◦ f(x̄) + v̄ ◦ g(x̄) ≤ r̄ ◦ f(x) + v̄ ◦ g(x) ∀ v ∈ K∗, ∀ x ∈ S.

In particular, setting v = 0 , we obtain v̄ ◦ g(x̄) ≥ 0 and, therefore, v̄ ◦ g(x̄) = 0.
Then,

r̄ ◦ f(x̄) ≤ r̄ ◦ f(x) ∀ x ∈ F

and, thus, x̄ is a solution of (P̂(r̄)).

The converse of the above result is also true under certain generalized convex-
ity hypotheses (in our case, generalized subconvex-likeness) and regularity on the
constraints of problem. We use a Slater type constraint qualification.

Definition 3.2 (Slater type Constraint Qualification). We say that the constraint
qualification (CQ) is satisfied if there exists x̃ ∈ F such that g(x̃) ∈ −intK.

Theorem 3.2. Assume that in the problem (P) the function (f − f(x̄), g) is gen-
eralized subconvex-like (with respect to the cone Q × K ⊂ F × G). If x̄ ∈ F is a
weakly efficient solution of (P) and (CQ) is verified, then there exist r̄, v̄ such that
(x̄, r̄, v̄) is a multiple saddle point.

Proof. The proof follows from Theorem 2.1. In fact, if x̄ is a weakly efficient solution
of (P), there does not exist a solution x ∈ E for the following system

{
f(x)− f(x̄) ∈ −intQ,

g(x) ∈ −K.
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Since the function (f−f(x̄), g) is generalized subconvex-like, by Theorem 2.1, there
exists (r̄, v̄) ∈ Q∗ ×K∗ \ {(0, 0)} such that

r̄ ◦ (f(x)− f(x̄)) + v̄ ◦ g(x) ≥ 0 ∀ x ∈ S

that is,
r̄ ◦ f(x) + v̄ ◦ g(x) ≥ r̄ ◦ f(x̄) ∀ x ∈ S. (3.2)

If x = x̄ in (3.2), then v̄ ◦ g(x̄) ≥ 0 and, therefore v̄ ◦ g(x̄) = 0, since g(x̄) ∈ −K

and v̄ ∈ K∗. Furthermore, v ◦ g(x̄) ≤ 0 ∀ v ∈ K∗. Thus, we have

r̄ ◦ f(x̄) + v ◦ g(x̄) ≤ r̄ ◦ f(x̄) + 0

= r̄ ◦ f(x̄) + v̄ ◦ g(x̄)

= r̄ ◦ f(x̄)

≤ r̄ ◦ f(x) + v̄ ◦ g(x)

for all v ∈ K∗ and x ∈ S.
Now, we show that r̄ 6= 0. From condition (CQ), there exists x̃ ∈ S, g(x̃) ∈

−intK. Taking x = x̃ in (3.2), we obtain

r̄ ◦ f(x̄) ≤ r̄ ◦ f(x̃) + v̄ ◦ g(x̃). (3.3)

By contradiction, assume that r̄ = 0. Then, v̄ 6= 0 and as g(x̃) ∈ −intK, it follows
from Lemma 2.1 that v̄ ◦ g(x̃) < 0. On the other hand, with r̄ = 0 in (3.3) we
get the opposite inequality, so that we have a contradiction. Therefore, r̄ 6= 0 and
hence (x̄, r̄, v̄) is a multiple saddle point.

4. Second Order Conditions

Here two relevant results regarding second order optimality conditions for (PF) are
proposed. Necessity and sufficiency are tackled, as applications of the so studied
notions and results. It is worth mentioning that such conditions are established
without demanding twice differentiability (in the classical sense).

We consider the following vectorial optimization problem:

minimize f(x) := (f1(x), ..., fp(x))
subject to gi(x) ≤ 0, i = 1, ...,m,

x ∈ S,

(PF)

where X is a Banach space and fj , gi : S ⊆ X → R, j = 1, ..., p, i = 1, ...,m, are
continuous and Gâteaux differentiable functions and S is a nonempty open subset
of X .

We prove second order conditions for weak efficiency in (PF) through the notions
of directional derivative, generalized Hessian (Cominetti and Correa [8]) and the
saddle point conditions studied in the last section.

We consider the Lagrangian function

Lr,v(x) :=

p∑

j=1

rjfj(x) +

m∑

i=1

vigi(x),
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where r ∈ R
p
+, v ∈ R

m
+ and x ∈ X.

It is well known (see Da Cunha and Polak [10] or Jahn [14]) that if x̄ is a
weakly efficient solution of (PF) and a regularity condition holds, then there exist
r̄ ∈ R

p
+ \ {0} and v̄ ∈ R

m
+ such that

p∑

j=1

r̄j∇fj(x̄) +

m∑

i=1

v̄i∇gi(x̄) = 0, (4.1)

v̄igi(x̄) = 0, i = 1, . . . ,m. (4.2)

In this case, (r̄, v̄) is said to be a pair of multipliers. Here we give a proof of this
result assuming that the Slater type constraint qualification and the generalized
subconvex-likeness of the functionals are satisfied.

Theorem 4.1. Let x̄ be a weakly efficient solution for (PF). We assume that the
function (f−f(x̄), g) is generalized subconvex-like (with respect to the cone R

p
+×R

m
+ )

and that (PF) satisfies the Slater constraint qualification. Then, there exists a pair
of multipliers (r̄, v̄) satisfying (4.1)-(4.2).

Proof. From Theorem 3.2, there exists (r̄, v̄) ∈ R
p
+×R

m
+ such that (x̄, r̄, v̄) is a

multiple saddle point. In particular, the following inequality holds true:

p∑

j=1

r̄jfj(x̄) +
m∑

i=1

v̄igi(x̄) ≤

p∑

j=1

r̄jfj(x) +
m∑

i=1

v̄igi(x) ∀ x ∈ S.

Since fj , gi are Gâteaux-differentiable, the inequality above implies that

p∑

j=1

r̄j∇fj(x̄) +
m∑

i=1

v̄i∇gi(x̄) = 0.

Furthermore, as we know from the proof of Theorem 3.2, when (x̄, r̄, v̄) is a multiple
saddle point we have

m∑

i=1

v̄igi(x̄) = 0.

Theorem 4.2 (Second order necessary conditions). Assume that x̄ is a weakly
efficient solution of (PF). If (f − f(x̄), g) is a generalized subconvex-like function
and (PF) satisfies the Slater constraint qualification, then

(i) there exists (r̄, v̄) such that (x̄, r̄, v̄) is a multiple saddle point;

(ii) the following inequality is verified:

L◦◦
r̄,v̄(x̄;u, u) ≥ 0 ∀ u ∈ S.
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Proof. (i) It follows directly from Theorem 3.2.
(ii) It is obvious that

L◦◦
r̄,v̄(x̄;u, u) ≥ lim sup

t↓0

1

t
〈∇Lr̄,v̄(x̄+ tu), u〉 ∀ u ∈ X.

Let u ∈ S. By the saddle point conditions,

p∑

j=1

r̄jfj(x̄) +
m∑

i=1

v̄igi(x̄) ≤

p∑

j=1

r̄jfj(x̄+ tu) +
m∑

i=1

v̄igi(x̄+ tu)

for all t ∈ (0, t0], where t0 > 0 is such that x̄+ t0u ∈ S. Hence

Lr̄,v̄(x̄+ tu) ≥ Lr̄,v̄(x̄) ∀ t ∈ (0, t0].

Fixed t ∈ (0, t0], by the Mean Value Theorem, there exists t̃ ∈ (0, t) such that

t 〈∇Lr̄,v̄(x̄+ t̃u), u〉 ≥ 0

and, consequently,

lim sup
t̃↓0

1

t̃
〈∇Lr̄,v̄(x̄ + t̃u), u〉 ≥ 0.

Thus, L◦◦
r̄,v̄(x̄;u, u) ≥ 0 for all u ∈ S.

Definition 4.1. Let Q ⊂ X. The Bouligand’s tangent cone to Q at x ∈ Q is
defined as

B(Q, x) := {u ∈ X : ∃ tα ↓ 0, ∃ uα → u such that x+ tαuα ∈ Q}.

Theorem 4.3 (Second order sufficient conditions). Assume that in problem (PF)
the functions fj, gi : R

n → R are C1,1−functions, for all j = 1, . . . , p and i =
1, . . . ,m. Then, a sufficient condition for a feasible point x̄ to be a local weakly
efficient solution of (PF) is that there exists a pair of multipliers (r̄, v̄) ∈ R

p
+ \{0}×

R
m
+ such that

−L◦◦
r̄,v̄(x̄;u,−u) > 0 ∀ u ∈ B(F, x̄) \ {0}.

Proof. Suppose that x̄ is not a local weakly efficient solution for (PF). Then, there
exists a sequence (xk) ⊂ F \ {x̄} such that xk → x̄ and

fj(xk) < fj(x̄), j = 1, ..., p, ∀ k ∈ N. (4.3)

Setting

uk :=
xk − x̄

‖xk − x̄‖

we see (taking subsequences if necessary) that uk → u, for some u ∈ X . Then
clearly u ∈ B(F, x̄) \ {0}. Put

ak :=
2

‖xk − x‖
2
(Lr̄,v̄(xk)− Lr̄,v̄(x̄)).
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From (4.3), the feasibility of xk and the fact that (r̄, v̄) is a pair of multipliers, it
follows that

Lr̄,v̄(xk)− Lr̄,v̄(x̄) =

p∑

j=1

r̄j(fj(xk)− fj(x̄)) +

m∑

i=1

v̄igi(xk) < 0,

so that ak < 0 ∀ k. By Proposition 2.2, there exists ξk ∈ ]xk, x̄[ such that ak ∈
〈∂2Lr̄,v̄(ξk)(uk), uk〉 ∀ k. Hence, there exists x∗

k ∈ ∂2Lr̄,v̄(ξk)(uk) such that ak =
〈x∗

k, uk〉 < 0 ∀ k. Furthermore, ξk → x̄. By Proposition 2.1-(c) we can assume,
without loss of generality, that x∗

k → x∗ ∈ ∂2Lr̄,v̄(x̄)(u). Therefore we obtain

〈x∗, u〉 = lim〈x∗
k, uk〉 ≤ 0.

In this way we have
−L◦◦

r̄,v̄(x̄;u,−u) ≤ −〈x∗,−u〉 ≤ 0

with u ∈ B(F, x̄) \ {0}, which contradicts the hypothesis.

We now present a very simple example illustrating Theorem 4.3.

Example 4.1. Consider the problem

minimize f(x) := (f1(x), f2(x)) = (|x|3/2, |x− 1|3/2)
subject to x ∈ R.

Observe that f ′
1 and f ′

2 are not differentiable functions (in the classical sense).
Let x̄ = 0 and x̂ = 1. Then it is easily verified that L′

r̄(x̄) = 0 for r̄ = (1, 0) and
L′
r̂(x̂) = 0 for r̂ = (0, 1), so that r̄ and r̂ are multipliers for x̄ and x̂, respectively.

We also have that −L◦◦
r (x;u,−u) > 0 for all u ∈ R \ {0}, for (r, x) = (r̄, x̄) and

(r, x) = (r̂, x̂). Thus x̄ and x̂ are weakly efficient solutions of this problem.

We close this paper with some few words on possible applications of generalized
second order optimality conditions.

In Huang and Yang [13] the authors present some nonlinear penalty methods
for a constrained multiobjective optimization problem. The last result can be used,
for example, in the study and development of these kind of methods. It is well
known that penalty functions may be nonsmooth. Besides, even when a smoothing
approach is performed the resulting function may not be twice differentiable.

The examination of the Hessian of the penalty function is important in choosing
effective algorithms (see Nocedal and Wright [16] for the mono-objective case). The
efficiency of penalty methods relies (not only) on the conditioning of the Hessian
matrix.

In Bazaraa et al. [2] it can be seen that second order sufficient conditions
are assumed on proving that the augmented Lagrangian penalty function can be
classified as an exact penalty function (for scalar optimization). Then, Theorem 4.3
can be employed in the development of such a method for multiobjective problems
with C1,1 data.

Another application of sufficient second order optimality conditions is in sensiv-
ity analysis. See Luenberger and Ye [15] for the mono-objective case.

These are topics for future work.
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Resumo. O artigo trata de um problema de otimização vetorial entre espaços de
Banach com restrições envolvendo cones. Usando-se uma lagrangiana que toma
valores escalares e o conceito de funções subconvexas generalizadas, soluções fra-
camente eficientes são caracterizadas por condições do tipo ponto de sela. Os
resultados, em conjunto com a noção de Hessiana generalizada (introduzida em
[R. Cominetti, R. Correa, A generalized second-order derivative in nonsmooth op-
timization, SIAM J. Control Optim., 28 (1990), 789–809]), são aplicados para se
obter condições necessárias e suficientes de segunda ordem para o caso particular
em que as funcionais envolvidas são definidas em um espaço de Banach geral mas
com valores em espaços de dimensão finita (sem exigir que as funções objetivo e de
restrições sejam duas vezes diferenciáveis).

Palavras-chave. Otimização multi-objetivo, problemas de otimização abstratos,
programação não-linear, condições de otimalidade tipo ponto de sela, condições de
segunda ordem generalizadas, convexidade generalizada.
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