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ABSTRACT. In [4], S. Elaydi obtained a characterization of the stability of the null solution of the Volterra

difference equation

xn =
n−1∑
i=0

an−i xi , n ≥ 1,

by localizing the roots of its characteristic equation

1 −
∞∑

n=1

anzn = 0.

The assumption that (an) ∈ �1 was the single hypothesis considered for the validity of that characterization,
which is an insufficient condition if the ratio R of convergence of the power series of the previous equation
equals one. In fact, when R = 1, this characterization conflicts with a result obtained by Erdös et al. in [8].
Here, we analyze the R = 1 case and show that some parts of that characterization still hold. Furthermore,
studies on stability for the R < 1 case are presented. Finally, we study some results related to stability via
finite approximation.

Keywords: difference equation, stability, convolution.

1 INTRODUCTION

In the present work, we analyze the stability of the null solution of Volterra difference equations
of convolution type,

xn =
n−1∑
i=0

an−i xi , n ≥ 1, (1.1)

whose recursive process starts at x0 ∈ R. Several results related to this subject matter circulates
in the specialized scientific literature. One of most well-known is the following theorem:
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338 ON THE STABILITY OF VOLTERRA DIFFERENCE EQUATIONS OF CONVOLUTION TYPE

Theorem 1 (See [10]). If
∞∑

n=1

|an| < 1, then the null solution of (1.1) is asymptotically stable.

We now present another important characterization of the stability of the null solution of (1.1)
as obtained by S. Elaydi in [4]. Let (xn) be a solution of (1.1) with initial condition x0 = 1.
Consider the two power series

x(z) :=
∞∑

n=0

xnzn, a(z) :=
∞∑

n=1

anzn .

Then, formally, such series satisfies

x(z)(1 − a(z)) = 1. (1.2)

Thus the coefficients of x(z) can be found by determining the coefficients of the power series
representation of the function (1 − a(z))−1. Hence the roots of the characteristic equation

1 −
∞∑

n=1

anzn = 0 (1.3)

play an important role in this sense. By this reasoning, S. Elaydi obtained necessary and sufficient
conditions for the stability of the null solution by localizing the roots of 1 − a(1/z) = 0 with
respect to the set {z ∈ C : ‖z‖ ≥ 1}. We now enunciate the result obtained by Elaydi with a

variable change by writing z in place of 1/z (as considered in [4]). In the following, we use the
notation:

Br (z0) = {z ∈ C : |z − z0| < r}, r > 0.

Theorem 2 (See [4, 6]). Let (an) ∈ �1 . Then:

(a) The null solution of (1.1) is stable if, and only if, the characteristic equation (1.3) has no
roots in B1(0) and its possible roots in |z| = 1 are of order 1.

(b) The null solution of (1.1) is asymptotically stable if, and only if, the characteristic equation
(1.3) has no roots in B1(0).

It is worth mentioning that the previous theorem has also appeared as theorems 6.16 and 6.17 in
[5]. Furthermore, as a consequence of theorem 2, Elaydi set the following result on asymptotic
instability:

Theorem 3 (See [4, 6]). If (an) ∈ �1 is a sequence whose terms do not change signs for n ≥ 1,
then the null solution of (1.1) is not asymptotically stable if one of the following conditions is

satisfied:

(a)
∑∞

n=1 an ≥ 1;

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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(b)
∑∞

n=1 an ≤ −1 and an > 0 for some n ≥ 1;

(c)
∑∞

n=1 an ≤ −1 and an < 0 for some n ≥ 1 and
∑∞

n=1 an is sufficiently small.

At this point, if we consider the sequence

an = 1

n(n + 1)
, n ≥ 1, (1.4)

the null solution of (1.1) is not asymptotically stable by the item (b) of theorem 2 or the item (a)
of theorem 3. On the other hand, (1.4) satisfies the conditions for asymptotic stability of the null

solution of (1.1) as given by the following theorem due to Erdös, Feller e Pollard:

Theorem 4 (See [8]). Let (an) be a sequence of nonnegative terms such that

gcd{n ∈ N : an > 0} = 1,
∞∑

n=1

an = 1 and
∞∑

n=1

nan = ∞.

Then the null solution of (1.1) is asymptotically stable.

Therefore there exists a contradiction between the previous theorem and theorems 2 and 3. An

analysis of the proof of theorem 2 makes clear that the analyticity of the power series a(z) on the
circumference |z| = 1 was strongly used. But this fact is not a consequence of the assumption
that (an) ∈ �1, as we can see in the example (1.4). Hence a simple correction can be made by

introducing the radius of convergence of the series a(z),

1

R
= lim sup

n→∞
n
√|an|, (1.5)

and replacing the hypothesis that (an) ∈ �1 by R > 1. In fact, if R > 1, then the function a(z) is
analytic in |z| = 1 and (an) ∈ �1, which are conditions that assure us of the validity of theorem 2.
Furthermore, by applying this new hypothesis, there is no contradiction between theorem 4 and

theorems 2 and 3 since we may easily show that the conditions of theorem 4 implies that R = 1.
In this sense, in order to avoid conflicts, we rewrite theorem 2 as follows:

Theorem 2′. Replace (an) ∈ �1 by R > 1. Then the items (a) and (b) of theorem 2 are valid.

Therefore, if R = 1, the validity of theorem 2 is an open problem since the analyticity on
the unit circumference can not be applied. Besides theorem 4, some other results give us some

sufficient conditions for the asymptotic stability of the null solution of (1.1) and can be found in
[1, 7, 11, 9, 2, 14, 12, 13].

Finally, note that the stability of the null solution of (1.1) depends on the behavior of the particular
solution (xn) with initial condition x0 = 1. In fact, an arbitrary solution to the equation (1.1) with

initial condition β is given by (xnβ). Thus, in what follows, (xn) denotes the solution of (1.1) with
initial condition x0 = 1. Therefore, just for future reference, we have the following elementary
result, which is already known in a more general case (see e.g. theorem 3.1 in [3]):

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Theorem 5. The null solution of (1.1) is:

1. stable if, and only if, (xn) is bounded;

2. asymptotically stable if, and only if, xn → 0.

The rest of this paper is divided as follows: In section 2 we analyze the stability for R = 1.

Furthermore, we study possible characterizations for the null solution of (1.1) to be stable if
R < 1. In section 3 we analyze the stability via finite approximations.

2 RESULTS ON STABILITY WHEN R = 1 OR R < 1

In this section, we provide some results concerning the stability/instability for the null solution of

(1.1) when R = 1 and R < 1. It is worth pointing out that the arguments to be used are still valid
in the case where R > 1. Initially we give two examples on stability/instability for the R < 1
case.

Example. Let p > 1. At first consider the sequence an = −pn . Then R < 1 and the solution
of (1.1) with initial condition x0 = 1 is (xn) = (1, −p, 0, 0, . . .), which converges to zero. So
the null solution is asymptotically stable. On the other hand, if we consider

an = pn−1

n(n + 1)
, n ≥ 1, (2.1)

we also have R < 1. However, since each term in this sequence is positive, it follows (by

induction) that each term of (xn) is positive. Hence xn ≥ an for each n ≥ 1. Thus (xn) is
unbounded and consequently the null solution of (1.1) is unstable by theorem 5.

The previous example shows that the stability or instability of the null solution does not depend
on the radius of convergence of a(z). In what follows we present a result on instability which

does not depend on the size of R. (In particular, it holds if R = 1 or R < 1, which is the case
where Theorem 2′ is not applicable.)

Theorem 6. Let Da =
{

z ∈ C :
∞∑

n=1

anzn converges

}
. If the characteristic equation (1.3) has

a root in Da ∩ B1(0), then the null solution of (1.1) is unstable.

Proof. Denote by ρ0eiθ , ρ0 ∈]0, 1[, one of the zeros of 1 − a(z) of smallest modulus. Hence
1 − a(z) 
= 0 for each z ∈ Bρ0(0). Since x(z) = (1 − a(z))−1 for every z ∈ Bρ0 (0), we have that

lim
ρ→ρ−

0

|x(ρeiθ )| = ∞.

Therefore the radius of convergence of x(z) is not greater than ρ0. Then

lim sup n
√|xn| ≥ 1

ρ0
> 1.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Thus, if 1
ρ0

> β > 1, there exists a subsequence (xnk ) for which nk
√|xnk | > β. So we conclude

that |xnk | > βnk . Therefore the sequence (xn) is not bounded. �

Remark. The converse of theorem 6 is not valid. In fact, for the sequence given in (2.1), the

null solution of (1.1) is unstable. On the other hand, since Da = B1/p(0) and

|a(z)| =
∣∣∣∣∣

∞∑
n=1

pn−1

n(n + 1)
zn

∣∣∣∣∣ ≤ 1

p
< 1, ∀z ∈ B1/p(0),

it follows that 1 − a(z) is not zero in Da ∪ B1(0).

Corollary 7. If
∞∑

n=1

an > 1 converges, then the null solution of (1.1) is unstable.

Proof. Since
∞∑

n=1

an converges, it follows from Abel’s theorem that the power series a(z) is

continuous in [0, 1]. Specifically, one has that lim
z→1− a(z) =

∞∑
n=0

an . So consider the function

b(z) = 1 − a(z). Then b(0) = 1 and b(1) < 0. Therefore b(z) has a zero in the interval
]0, 1[⊂ B1(0). It follows from the previous theorem that the null solution of (1.1) is not stable.

�

Remark. By item (a) of theorem 3, we have that the lack of asymptotic stability takes place
when, in particular, the hypothesis of the previous corollary holds, provided that the terms of the
sequence (an) do not change signs. So, the previous corollary states the lack of stability (and
therefore the lack of asymptotic stability) without any sign-preserving condition. Furthermore,

that corollary remains valid if we replace the hypothesis
∞∑

n=1
an > 1 by

∞∑
n=1

(−1)n an < 1.

The following theorem shows that part of what was stated in the item (b) of theorem 2′ remains
valid if R = 1.

Theorem 8. If 1 − a(z) is continuous and not zero in B1(0), then the null solution of (1.1) is

asymptotically stable.

Proof. First we observe that the function x(z) = (1 − a(z))−1 is uniformly continuous on
B1(0). Now, for each ρ ∈ [0, 1[ and n ∈ N, define the following two functions on the interval
[0, 2π]:

fρ(θ) = x(ρeiθ )e−inθ , f (θ) = x(eiθ )e−inθ .

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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It follows from the uniform continuity of x(z) on B1(0) that fρ → f uniformly on [0, 2π] as

ρ → 1−. Therefore

lim
ρ→1−

∫ 2π

0
x(ρeiθ )e−inθ dθ =

∫ 2π

0
x(eiθ )e−inθ dθ .

From the Cauchy’s Integral Formula, we have that, for every ρ ∈]0, 1[,

xn = 1

2π i

∫
|z|=ρ

x(z)

zn+1
dz = 1

2πρn

∫ 2π

0
x(ρeiθ )e−inθ dθ .

Applying the limit when ρ → 1−, it follows that

xn = 1

2π

∫ 2π

0
x(eiθ )e−inθ dθ .

So, by the Riemann-Lebesgue Lemma, one has xn → 0, which shows that the null solution of
(1.1) is asymptotically stable. �

Remark. The conclusion of the preceding theorem is not valid if the radius of convergence of
a(z), R, is less than one. In other words, even if 1−a(z) is continuous and not zero in BR(0), the

null solution may not be asymptotically stable. To illustrate this statement, it suffices to consider
the sequence given in (2.1). Additionally, note that, if R = 1, the converse of the preceding
theorem is not valid, as shown in example (1.4).

To finalize this section, we enunciate an auxiliary lemma for the characterization of the stability
(not necessarily an asymptotic one) of the null solution when R = 1.

Lemma 9. Consider the following power series

y(z) =
∞∑

n=0

ynzn, p(z) =
∞∑

n=0

pnzn.

Suppose that (yn) is bounded. Then:

1. If p(z) = (1 − e−iθ z)y(z), then (pn) is bounded.

2. If p(z) = (1 − z)y(z), then p(z) is bounded on the interval [0, 1[.

Proof. First note that pn = yn − e−iθ yn−1 for each n ≥ 1. Hence, if C = supn≥0 |yn|, then
|pn| ≤ 2C for every n ≥ 1, which demonstrates the item 1. Consider now that the hypothesis of
the item 2 is valid. It follows that z ∈ [0, 1[ implies

|p(z)| ≤ (1 − z)
∞∑

n=0

|yn|zn ≤ C(1 − z)
∞∑

n=0

zn = C. �

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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In what follows, suppose that the power series a(z) converges on B1(0) and the possible zeros of

1 − a(z) occur at eiθ1 , . . . , eiθs , in other words,

1 − a(z) = (1 − e−iθ1 z)m1 · · · (1 − e−iθs z)ms q(z), (2.2)

where q(z) is not zero in B1(0). Furthermore, consider the space

L
1 :=

{
q(z) =

∞∑
n=0

qnzn : (qn) ∈ �1

}
.

Next, it follows a characterization of the stability for R = 1:

Theorem 10. Assume that the power series a(z) converges on B1(0) and q ∈ L1. The null
solution of (1.1) is stable if, and only if, the possible zeros of 1 − a(z) as given in (2.2) are of
order 1.

Proof. First consider that m1 = · · · = ms = 1. Since q ∈ L1 and q is not zero in B1(0), by

Wiener’s Theorem, we have that

[q(z)]−1 = q̂(z) =
∞∑

n=0

q̂nzn ∈ L1. (2.3)

On the other hand,

⎡
⎣ s∏

j=1

(1 − e−iθ j z)

⎤
⎦

−1

=
∞∑

n=0

αnzn with αn =
s∑

j=1

⎛
⎝ e

i
(∑

μ
= j θμ

)
∏

μ 
= j (e
iθμ − eiθ j )

⎞
⎠ e−iθ j n . (2.4)

Since x(z) = (1 − a(z))−1 for z ∈ B1(0), it follows from (2.3) and (2.4) that

x(z) =
( ∞∑

n=0

αnzn

)( ∞∑
n=0

q̂nzn

)
.

As a result of equating coefficients, we have that xn =
n∑

k=0

αn−k q̂k. Therefore

|xn| ≤ C
∞∑

k=0

|q̂k |,

where C is a constant which is an upper bound for the sequence (|αn|). So (xn) is bounded and

then, by theorem 5, the null solution of (1.1) is stable. Conversely, suppose that the null solution
of (1.1) is stable and m1 ≥ 2. Replacing z by eiθ1 z in x(z)(1 − a(z)) = 1, it follows that

p(z)(1 − z)m1−1q
(

eiθ1 z
)

= 1, ∀z ∈ B1(0),

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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with

p(z) = (1 − z)
(

1 − ei(θ1−θ2)z
)m2 · · ·

(
1 − ei(θ1−θs)z

)ms
x
(

eiθ1 z
)

.

Since, by theorem 5, the sequence (xn) is bounded, by applying the item 1 several times and
finally the item 2 of the preceding lemma, one has that p(z) is bounded on [0, 1[. Therefore

1 = lim
z→1−

z∈R
x(eiθ1 z)(1 − a(eiθ1 z)) = lim

z→1−
z∈R

p(z)(1 − z)m1−1q(eiθ1 z) = 0,

which is absurd. Hence m1 = 1. �

Corollary 11. Let
∞∑

n=1

n|an| < ∞. If 1 − a(z) is not zero in B1(0) and has a finite number of

zeros of order one in |z| = 1, then the null solution of (1.1) is stable.

Proof. Suppose that z = 1 is a zero of 1 − a(z) and consider

q(z) =
∞∑

n=0

qnzn := 1 − a(z)

1 − z
= (1 − a(z))

( ∞∑
n=0

zn

)
.

Then q0 = 1 and, for n ≥ 1, one has that

qn = 1 −
n∑

k=1

ak =
∞∑

k=n+1

ak .

It is easy to verify that, for n ≥ 1, we have

n−1∑
k=0

qk =
n∑

k=1

kak + n
∞∑

k=n+1

ak .

So

n−1∑
k=0

|qk | ≤
n∑

k=1

k|ak | + n
∞∑

k=n+1

|ak| ≤
∞∑

k=1

k|ak | ∀n ∈ N.

Thus 1 − a(z) = (1 − z)q(z) with q ∈ L1. On the other hand, if z = eiθ is a zero of 1 − a(z),
one has that z = 1 is a zero of 1 − ã(z), ã(z) = a(eiθ z), which satisfies the hypotheses of

this corollary. Hence 1 − ã(z) = (1 − z)q̃(z) with q̃ ∈ L1 or, equivalently, (1 − a(z)) =
(1−e−iθ z)q(z), where q(z) = q̃(e−iθ z) and therefore q ∈ L1. Now consider the set {eiθ j : j =
1, . . . , s} consisting of all zeros of 1 − a(z). Then, by partial fractions, we have

1 − a(z)

(1 − e−iθ1 z) · · · (1 − e−iθs )
=

s∑
j=1

β j (1 − a(z))

(1 − e−iθ j z)
=

s∑
j=1

β j q j (z),

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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where each q j ∈ L1. So, if q =
s∑

j=1

β j q j ∈ L1, then

1 − a(z) = (1 − e−iθ1 z) · · · (1 − e−iθs z)q(z).

It follows from the preceding theorem that the null solution of (1.1) is stable. �

Example. The sequence an = c0
(−1)n

n3
, c0 :=

( ∞∑
n=1

1

n3

)−1

, satisfies the hypotheses of the

previous corollary. So the null solution of (1.1) is stable. Note that, in this case, theorem 2′
cannot be used for obtaining this result since R = 1.

3 STABILITY VIA APPROXIMATION

In this final section we state some conditions for stability via polynomial approximation by ap-
plying the following theorem (known as Rouché’s Theorem):

Theorem 12. If f and f + h are analytic functions on Bρ(z0) such that

|h(z)| < | f (z)| in |z| = ρ,

then f and f + h have the same number of zeros in Bρ(z0).

Now, for each n ∈ N, consider the polynomial

pn(z) = zn − a1zn−1 − · · · − an−1z − an ,

where a1, . . ., an are the first n coefficients of the power series a(z). Define

rn := max{|z| : pn(z) = 0}

and z1, . . . , zn as the n zeros of pn(z), that is,

p(z) = (z − z1) . . . (z − zn).

In what follows we enunciate some results of stability via finite approximations of the character-
istic equation.

Theorem 13. If there exists an index n such that

rn < 1 and
∞∑

i=n+1

|ai | < (1 − rn)n ,

then the null solution of (1.1) is asymptotically stable.

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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Proof. For |z| = 1, we have that

1 − rn ≤ 1 − |zi | ≤ |z| − |zi | ≤ |z − zi |, i = 1, . . . , n.

So (1 − rn)n ≤ |pn(z)| for |z| = 1. Consider the nth partial sum of 1 − a(z), that is,

sn(z) := 1 −
n∑

k=1

ak zk .

Hence, since sn(z) = zn pn(1/z) for z 
= 0, one has that sn(z) is not zero in B1(0) and (1−rn )n ≤
|sn(z)| for |z| = 1. Then

|1 − a(z) − sn(z)| =
∣∣∣∣∣∣

∞∑
i=n+1

ai z
i

∣∣∣∣∣∣ ≤
∞∑

i=n+1

|ai | < (1 − rn)n ≤ |sn(z)| .

By Rouché’s Theorem, 1 − a(z) and sn(z) have the same number of zeros in B1(0). Therefore
1 − a(z) is not zero in B1(0). It follows from theorem 8 that the null solution of (1.1) is asymp-
totically stable. �

Example. Let (βn) be a sequence with βn ∈ {−1, 1}. The sequence

(an) =
(

3

2
, − 9

16
,
β1

20
,

β2

202
,

β3

203
, · · ·

)

does not satisfy the hypothesis of theorem 1. However, by considering the polynomial p2(z), we

obtain r2 = 3/4 and, since

∞∑
i=3

|ai | = 1

19
< (1 − 3/4)2,

the null solution of (1.1) is asymptotically stable.

Example. The sequence

(an) =
(

1, −41

36
,

8

9
, −34

81
,

16

81
, − 4

81
,

1

2 · 46
,

1

22 · 46
,

1

23 · 46
, · · ·

)

does not satisfy the hypothesis of theorem 1. By a computational calculus, the values of rn and

Ln :=
∞∑

i=n+1

|ai | are as shown in the table that follows. Note that the hypothesis of the preceding

theorem is satisfied for n = 6. So the null solution of (1.1) is asymptotically stable.

Theorem 14. If there exists an index n such that rn > 1 and

∞∑
i=n+1

|ai | < δn(ρ0),

Tend. Mat. Apl. Comput., 18, N. 3 (2017)
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n rn Ln (1 − rn)n

1 1 – –
2 1.067 – –
3 1.012 – –

4 0.913 0.24716 0.00005
5 0.781 0.04963 0.00050
6 0.667 0.00024 0.00137

where ρ0 is the point that maximizes the function δn : [r−1
n , 1] → R defined by

δn(ρ) := |(1 − ρ|z1|)(1 − ρ|z2|) · · · (1 − ρ|zn|)|,
then the null solution of (1.1) is unstable.

Proof. Since δ(r−1
n ) = 0, one has r−1

n < ρ0 ≤ 1. If |z| = ρ0, then |1 − zzi | ≥ |1 − ρ0|zi ||. So

the partial sum considered in the preceding theorem satisfies

|sn(z)| = |1 − zz1| · · · |1 − zzn| ≥ δn(ρ0).

Therefore, for |z| = ρ0, we have that

|1 − a(z) − sn(z)| = |
∞∑

i=n+1

ai z
i | ≤

∞∑
i=n+1

|ai | < δn(ρ0) ≤ |sn(z)|.

Now, let j with |z j | = rn . Then z−1
j ∈ Bρ0(0) and sn(z

−1
j ) = 0. Hence, by Rouché’s Theorem,

1−a(z) has at least a zero in Bρ0(0) ⊂ B1(0). Therefore, by theorem 6, the null solution of (1.1)
is unstable. �

Remark. Let us put the moduli of the zeros of pn in descending order, say |z1| ≥ · · · ≥ |zn|.
Assume that the hypotheses of the preceding theorem hold. Consider i0 is the highest index with

|zi0 | > 1. Then |zi0+1| ≤ 1. Hence one has the following estimates:

1. If i0 = n, then E1 := |1 − |zn||n ≤ δn(1) ≤ δn(ρ0).

2. If |zi0+1| < 1, then E2 := min{|1 − |zi0 ||n, |1 − |zi0+1||n} ≤ δn(1) ≤ δn(ρ0).

3. If |zi0+1| = 1, then E3 := |1 − ρ1|zi0 ||n ≤ δn(ρ1) ≤ δn(ρ0) with ρ1 = 2/(|zi0 | + 1).

As a consequence of the previous remark, we may state the following corollary:

Corollary 15. With the same assumptions of the preceding theorem, if
∞∑

i=n+1

|ai | < E,

where E = E1, E2 or E3 are given as in the previous remark, then the null solution of (1.1) is
unstable.
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Example. Consider the sequence (an) given by

a1 = 4, a2 = −4, an = 1

2n−1
, n ≥ 3.

(an) does not satisfy the assumptions of corollary 7. However the zeros of p2(z) are z1 = z2 = 2.
Since

∞∑
k=3

|ak | = 1

2
< |1 − 2|2,

the null solution of (1.1) is unstable by the previous corollary.

RESUMO. In [4], S. Elaydi obteve uma caracterização da estabilidade da solução nula da

equação a diferenças de Volterra

xn =
n−1∑
i=0

an−i xi , n ≥ 1,

localizando as raı́zes de sua equação caracterı́stica

1 −
∞∑

n=1

anzn = 0.

A suposição de que (an) ∈ �1 foi a única hipótese considerada para a validade daquela

caracterização, que é uma condição insuficiente se o raio R de convergência da série de

potência da equação anterior é igual a um. De fato, quando R = 1, esta caracterização entra

em conflito com um resultado obtido por Erdös e colaboradores em [8]. Aqui, nós analisamos

o caso R = 1 e mostramos que algumas partes daquela caracterização ainda se mantêm.

Ainda, são apresentados estudos sobre a estabilidade para o caso R < 1. Finalmente, estu-

damos alguns resultados relativos a estabilidade via aproximações finitas.

Palavras-chave: equação a diferenças, estabilidade, convolução.
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