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ABSTRACT. If a graph G has exactly t different sizes of maximal independent sets, G belongs to a
collection called Mt . For the Cartesian product of the graph Pn , the path of length n, and Cm , the cycle
of length m, called cylindrical grid, we present a method to find maximal independent sets having different
sizes and a lower bound on t, such that these graphs belong to Mt .
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1 INTRODUCTION

In [9] Plummer defines a graph to be well-covered if all its maximal independent sets have the
same size. Generalizing this concept, Finbow, Hartnell, and Whitehead [4] define, for every
t ∈ N, the set Mt as the set of graphs that have maximal independent sets of exactly t different
sizes. With this notation,M1 is precisely the set of well-covered graphs.

Well-covered graphs have been investigated from several different parameters. See the survey
[10], for more details. Topp and Volkmann [11] proposed the following question about Cartesian
products and well-covered graphs: “Do there exist non well-covered graphs whose Cartesian
product is well-covered?”. This question was partially answered by Fradkin [5] for some classes
of triangle-free graphs and recently a negative answer was given by Hartnell and Rall [7], for
arbitrary graph. For G ∈ Mt and v ∈ V (G), Barbosa and Hartnell [2] determine the extreme
values that r can assume where G\v belongs toMr . Additional properties of graphs in this class
are given in [1]. Results on Mt , for t ≥ 2, related to graphs without small cycles are also given
in [3, 4, 6].

The Cartesian product Pn � Cm is a cylindrical grid graph. Every maximal independent set in
a graph is a dominating set, although the converse is not always true. In [8], methods to find the
domination number of cylindrical grid graphs Pn � Cm with m ≥ 3 and n = 2, 3, and 4 were
proposed. Moreover, bounds on the domination numbers were found when n = 5 and m ≥ 3.
We present a method to find maximal independent sets having different sizes and a lower bound
for t , such that Pn � Cm belongs toMt .
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368 ON THE SIZES OF MAXIMAL INDEPENDENT SETS OF CYLINDRICAL GRID GRAPHS

Before we present our results and proofs, we summarize our notation.

We consider finite, simple, and undirected graphs. For a graph G, the vertex set and the edge
set are denoted V (G) and E(G), respectively. For a vertex u of G, its neighbourhood is denoted
NG(u) and its closed neighbourhood denoted NG [u] is the set NG(u) ∪ {u}. For a set U of
vertices of G, let

NG(U ) =
⋃
u∈U

NG(u) \ U and NG [U ] = NG(U ) ∪ U.

A set D ⊆ V (G) of a graph G is a dominating set if every vertex v ∈ V (G)\D is adjacent to
some vertex u ∈ D. The domination number of G is the cardinality of a smallest dominating set
of the graph G and is usually denoted by γ (G).

A set I of vertices of a graph G is independent if no two vertices in I are adjacent. An indepen-
dent set I of G is maximal if every vertex u in V (G)\ I has a neighbour in I . An independent set
I of G is maximum if G has no independent set J with |J | > |I |. We denote i(G) the cardinal-
ity of a smallest maximal independent set in G. We denote α(G) the cardinality of a maximum
independent set in G and ms(G) the set of all sizes of maximal independent sets in G. Hence, if
G is well-covered, then i(G) = α(G) and |ms(G)| = 1.

For any two graphs G and H , the Cartesian product G � H is the graph with vertex set V (G)×
V (H ), such that two vertices (u1, v1) and (u2, v2) of G � H are adjacent whenever v1 = v2 and
u1u2 ∈ E(G) or u1 = u2 and v1v2 ∈ E(H ). Here, the vertices of the path Pn or the cycle Cn are
always denoted 0, 1, . . . , n − 1. For the graph Pn � Cm , we denote (Cm)i the graph Cm � {i},
with i ∈ V (Pn).

For naturals a, b, and c, with c > b + 1, we shall denote the set {i : a ≤ i ≤ b} ∪ {c} by
{a, . . . , b, c}.

2 RESULTS

In [8] Nandi, Parui, and Adhikari establish the following result regarding the domination number
of Cartesian product of paths and cycles.

Theorem 1. [8] For all m ≥ 3,

• γ (P2 � Cm ) =
{

m
2 , if m ≡ 0 (mod 4),⌈

m+1
2

⌉
, otherwise;

• γ (P3 � Cm ) =
⌈

3m
4

⌉
;

• γ (P4 � Cm ) =
{

m + 1, for m = 3, 5, 9,

m, otherwise;
• for m ≥ 6, m + ⌈m

5

⌉ ≤ γ (P5 � Cm) ≤ m + ⌈m
4

⌉
.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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One of our main results is the following. It will be proved in Section 2.2.

Theorem 2. Let n ≥ 3 and m ≥ 4. If G = Pn � Cm , then G ∈ Mt for some

t ≥
{

n
⌊m

4

⌋
, if m ≡ 0, 2, 3 (mod 4),

n
⌊m

4

⌋ − �n
2	, if m ≡ 1 (mod 4).

We begin showing the size of a maximum independent set in a graph Pn � Cm .

Proposition 3. For n ≥ 2 and m ≥ 3, α(Pn � Cm) = n
⌊m

2

⌋
.

Proof. Since α(Cm) = ⌊m
2

⌋
and we have n cycles Cm , we conclude that α(Pn � Cm) ≤

n
⌊m

2

⌋
. Now, we show that α(Pn � Cm ) ≥ n

⌊m
2

⌋
presenting a maximal independent set with

this cardinality. Let I be the set of vertices (i, j ) of Pn � Cm such that i = 0, . . . , n − 1,
j = 0, . . . , 2

⌊m
2

⌋ − 1, and i + j is an odd integer. The set I has cardinality n
⌊m

2

⌋
and it is a

maximal independent set in Pn � Cm . �

In Theorem 7, we determine t such that P2 � Cm belongs to Mt . Before, we prove some
preliminary results.

Lemma 4. Let m ≥ 3 and G = P2 � Cm . If I is a maximal independent set of G, then I has
even cardinality.

Proof. Let I be a maximal independent set in G, Xi = I ∩ (Cm)i and xi = |Xi |, for i = 0, 1.
We show that x0 = x1. By symmetry, consider the subgraph induced by (Cm )0\X0, denoted by
H . The graph H has exactly x0 disjoint connected paths. We denote them by P(k), k = 1, . . . , x0.
If |V (P(k))| > 3, for some k ∈ {1, . . . , x0}, (Cm )0\NG [X0] has some path with at least two
vertices, which implies at least two consecutive vertices in I ∩ (Cm )1. Thus we may assume
|V (P(k))| ≤ 3, k = 1, . . . , x0.

Fix some k ∈ {1, . . . , x0}. Let (v1, v2, . . . , vq), with q = |V (P(k))|, be one of the two
orderings of the vertices of P(k) such that adjacent vertices are consecutive. For each j ∈
{1, 2, . . . , |V (P(k))|}, let v′

j be the neighbour of v j in (Cm )1. Note that exactly x0 vertices in
(Cm )1 are in NG(X0) and they are separated by at most three vertices. We have three cases for
each P(k). If |V (P(k))| = 1, v′

1 must belong to I since its neighbours in the same cycle are
dominated by I . If |V (P(k))| = 2, v1 and v2 belong to NG(I ) and exactly one of v′

1 and v′
2

must belong to I . If |V (P(k))| = 3, the vertices v2, v′
1, v′

2, and v′
3 are not in NG(X0). Hence v′

2
must be in I . Therefore, in all cases, for k = 1, . . . , x0, for every path P(k), there is exactly one
vertex in X1, resulting in |I ∩ (Cm )0| = |I ∩ (Cm )1|. �

Lemma 5. Let n ≥ 2, m ≥ 3 and G = Pn � Cm . If I is a maximal independent set in G, then

|I ∩ (Cm )i | ≥
⌈m

4

⌉
,

for i ∈ {0, n − 1}.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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Proof. Let I be a maximal independent set in G, Xi = I ∩ (Cm )i and xi = |Xi |, for

i ∈ {0, n −1}. Suppose xi <
⌈m

4

⌉
, for some i ∈ {0, n −1}. By symmetry, we may assume i = 0.

Consider the graph (Cm )0 and the subgraph H induced by (Cm)0\NG [X0]. Since at most
3

⌈m
4

⌉ − 3 vertices of (Cm )0 are in NG [X0], at least �m
4  of those vertices are not in NG [X0].

Moreover, H has at most x0 disjoint connected paths. Therefore, at least one of these paths has at
least two vertices. Since I is maximal, two adjacent vertices in (Cm )1 are in I . This contradicts
the independence of I and completes the proof. �

Proposition 6. For m ≥ 3, i(P2 � Cm ) = 2
⌈m

4

⌉
.

Proof. Let J = {(0, i) : i ≡ 1 (mod 4)} ∪ {(1, i) : i ≡ 3 (mod 4)}. We consider a set I with

I = J , if m ≡ 0 (mod 4), I = J ∪ {(1, 0), (0, m − 1)}, if m ≡ 1 (mod 4), and I = J ∪ {(1, 0)},
otherwise.

Note that I is a maximal independent set of P2 � Cm , and |I | = 2
⌈m

4

⌉
. Hence, i(P2 � Cm) ≤

2
⌈m

4

⌉
. By Lemma 5, |I ∩ (Cm)0| + |I ∩ (Cm )1| ≥ 2

⌈m
4

⌉
and the desired statement follows. �

Now, we can show the quantity of different sizes of maximal independent sets in P2 � Cm .

Theorem 7. For m ≥ 3 and G = P2 � Cm, G ∈
{
M� m

4 	, if m ≡ 1 (mod 4),

M� m
4 	+1, otherwise.

Proof. By Proposition 3, α(G) = 2
⌊m

2

⌋
, and by Proposition 6, i(G) = 2

⌈m
4

⌉
. We present

maximal independent sets of G with every even cardinality between 2
⌈m

4

⌉
and 2

⌊m
2

⌋
, in view

of Lemma 4.

First, let l =

⎧⎪⎨
⎪⎩

m, if m ≡ 0, 3 (mod 4),

m − 3, if m ≡ 1 (mod 4),

m − 2, if m ≡ 2 (mod 4),

and

k =
{

�m
4 	 − 1, if m ≡ 1 (mod 4),

�m
4 	, otherwise.

Let I (0)′ = {(1, i), i ≡ 0 (mod 4)}, i ≤ l} ∪ {(0, i), i ≡ 2 (mod 4), i ≤ l} and

I (0) =

⎧⎪⎨
⎪⎩

I (0)′, if m ≡ 0, 3 (mod 4),

I (0)′ ∪ {(0, m − 1), (1, m − 2)}, if m ≡ 1 (mod 4),

I (0)′ ∪ {(0, m − 1)}, if m ≡ 2 (mod 4).

Note that the set I (0) is a maximal independent set in G and |I (0)| = 2�m
4  = i(G). For every

j ∈ {1, . . . , k}, let

I ( j ) = I ( j − 1) \ {(0, 4 j − 2)} ∪ {(0, 4 j − 3), (0, 4 j − 1), (1, 4 j − 2)}.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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For every j ∈ {0, . . . , k}, I ( j ) is a maximal independent set in G and |I ( j )| = 2�m
4  + 2 j .

Hence G has maximal independent sets of k + 1 different sizes which results in
⌊m

4

⌋
if 1 ≡

m (mod 4), or
⌊m

4

⌋ + 1, otherwise. This completes the proof. �

By Theorem 2, when n ≥ 3 and m ≥ 4, Pn � Cm is not well-covered. The graph P2 � C5 is
well-covered and also Pn � C3 for n ≥ 2, as we show in next proposition.

Proposition 8. For n ≥ 2, if G = Pn � C3, then G is well-covered.

Proof. By Proposition 3, α(G) = n. Let I be a maximal independent set in G. We show that

|I | = n. For a contradiction, suppose |I | < n. Hence there is some j ∈ {0, . . . , n − 1}, with
I ∩ (C3) j = ∅. Let S denote the set NG(V ((C3) j )). Since I is maximal and from the structure
of G, |S ∩ I | ≥ 3. But S induces one or two cycles C3, which contradicts the independence

of I . �

Proposition 9. Let n ≥ 3, m ≥ 4 and G = Pn � Cm. If m is even, then there is no maximal

independent set I in G such that |I | = nm
2 − 1;

Proof. By Proposition 3, α(G) = nm
2 . A maximum independent set of G has m

2 vertices of
every cycle (Cm )i , for i = 0, . . . , n − 1. Suppose that there exists a maximal independent set I

of G of size nm
2 − 1. Any independent set of G has at most m

2 vertices on any cycle (Cm )i , for
i = 0, . . . , n − 1. Hence there exists some i ∈ {0, . . . , n − 1} such that |(Cm )i ∩ I | = m

2 − 1.
At least one between (Cm )i−1 and (Cm )i+1 exists. Let j ∈ {i − 1, i + 1} such that (Cm) j exists.

Set (Cm) j ∩ I has size m
2 . Therefore, either all vertices ( j, k) with k even or all vertices ( j, k)

with k odd are in (Cm ) j ∩ I . Adjust notation of the vertex labeling of Cm such that all vertices
( j, k) with k even are in I . Therefore, all vertices (i, f ) of (Cm )i ∩ I will be such that f is odd.
Considering m ≥ 4, m

2 − 1 is at least one, thus (Cm )i ∩ I has at least one vertex (i, f ) with f

odd. Therefore, if both (Cm)i−1 and (Cm )i+1 exist, then on both of them all vertices (i − 1, k)

and (i + 1, k) for k even are in I . Considering there is exactly m
2 − 1 vertices in (Cm)i ∩ I ,

there is a vertex (i, f ) with f odd without a neighbour in (Cm )i ∩ I . However, (i, f ) is not a

neighbour of any vertex in I . Thus, I is not maximal. �

2.1 Two useful classes of graphs

Before we prove Theorem 2, we show how to construct recursively two useful classes of graphs,
denoted Hr and Fs . Furthermore, we show the different sizes of maximal independent sets in

these graphs.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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Let the graph H1 have the vertex set V (1) = {v(1)
1 , v

(1)
2 , v

(1)
3 } and the edge set E (1) = {v(1)

1 v
(1)
2 ,

v
(1)
2 v

(1)
3 }. For r ≥ 2, let the graph Hr have the vertex set

{
V (r) = V (r−1) ∪ {v(r)

1 }, for r even,

V (r) = V (r−1) ∪ {v(r)
1 , v

(r)
2 , v

(r)
3 }, for r odd,

and the edge set

{
E (r) = E (r−1) ∪ {v(r)

1 v
(r−1)
2 }, for r even,

E (r) = E (r−1) ∪ {v(r)
1 v

(r)
2 , v

(r)
2 v

(r)
3 , v

(r)
2 v

(r−1)
1 }, for r odd.

See Figure 1 for an example.

� � �

� � � � �

� � �

v
(4)
1

v
(5)
1

v
(5)
2

v
(5)
3

Figure 1: The graph H5.

From the recursive construction, we can determine the sizes of maximal independent sets in Hr ,
as we prove in Proposition 10.

Proposition 10. For r ≥ 2, Hr ∈ Mr . Furthermore, ms(Hr ) = {⌈ r
2

⌉
, . . . ,

⌈
3r
2

⌉
− 2,

⌈
3r
2

⌉
}.

Proof. We prove the statement by induction on r. For r = 2, 3, 4, the result is trivial. Now let
r ≥ 5. We have to consider two cases. If r is even, by construction of Hr , it was obtained from

Hr−1 by the addition of the vertex v
(r)
1 and the edge v

(r)
1 v

(r−1)
2 . Since v

(r)
1 is a leaf, every maximal

independent set in Hr contains either v
(r)
1 or v

(r−1)
2 . Considering the first case, Hr \ NG [v(r)

1 ] has
a component isomorphic to Hr−2 and two isolated vertices. By induction hypothesis, Hr−2 ∈
Mr−2 and ms(Hr−2) = {r

2 − 1, . . . , 3r
2 − 5, 3r

2 − 3}. By adding the isolated vertices and v
(r)
1

we obtain maximal independent sets in Hr with sizes in A = {r
2 + 2, . . . , 3r

2 − 2, 3r
2 }. The

graph Hr \ NG[v(r−1)
2 ] is isomorphic to Hr−3. By induction hypothesis, Hr−3 ∈ Mr−3 and

ms(Hr−3) = {r
2 −1, . . . , 3r

2 −6, 3r
2 −4}. By adding v

(r−1)
2 we obtain maximal independent sets

in Hr with orders in B = {r
2 , . . . , 3r

2 −5, 3r
2 −3}. Since A∪ B = ms(Hr ) = {r

2 , . . . , 3r
2 −2, 3r

2 },
the desired statement follows for r even, with r ≥ 5.

If r is odd, by construction of Hr , it was obtained from Hr−1 by the addition of the vertices

v
(r)
1 , v

(r)
2 and v

(r)
3 , and the edges v

(r)
1 v

(r)
2 , v

(r)
2 v

(r)
3 and v

(r)
2 v

(r−1)
1 . Since v

(r)
1 and v

(r)
3 have degree

one, every maximal independent set in Hn contains either v
(r)
1 and v

(r)
3 , or v

(r)
2 . Considering the

first case, Hr \ NG[{v(r)
1 , v

(r)
3 }] is isomorphic to Hr−1. By induction hypothesis, Hr−1 ∈ Mr−1

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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and ms(Hr−1) = {r−1
2 , . . . , 3r−1

2 − 3, 3r−1
2 − 1}. By adding v

(r)
1 and v

(r)
3 we have maximal

independent sets in Hn with sizes in C = {r+1
2 + 1, . . . , 3r+1

2 − 2, 3r+1
2 }. The graph Hr \

NG [v(r)
2 ] is isomorphic to Hr−2. By induction hypothesis, Hr−2 ∈ Mr−2 and ms(Hr−2) =

{r−1
2 , . . . , 3r+1

2 −5, 3r+1
2 −3}. By adding the vertex v

(r)
2 we obtain maximal independent sets in

Hr with sizes in D = {r+1
2 , . . . , 3r+1

2 −4, 3r+1
2 −2}. Since C∪D = ms(Hr ) = {r+1

2 , . . . , 3r+1
2 −

2, 3r+1
2 }, the desired statement follows for r odd, with r ≥ 5. This completes the proof. �

Proposition 11. Let r be a fixed positive integer with r ≥ 3 and t ≥ 1. If G is a graph with t
components, each one isomorphic to Hr , then G ∈ Mrt and,

ms(G) =
{

t
⌈r

2

⌉
, . . . , t

(⌈r

2

⌉
+ r

)
− 2, t

(⌈r

2

⌉
+ r

)}
.

Proof. For t = 1 the result is trivial in view of Proposition 10. We consider t ≥ 2. Let L j ,
for j ∈ {1, . . . , t}, be the components of G. Let I ( j ) be a maximal independent set in the
subgraph L j . For every j ∈ {1, . . . , t}, ⋃t

j=1 I ( j ) is a maximal independent set of G. By

Proposition 10, |I ( j )| ∈ {�r
2 , . . . , �r

2 + r − 2, �r
2 + r}. Thus, all values on the interval

[�r
2, �r

2 +r−2] are present in ms(L j ). Therefore, it is possible to obtain a maximal independent
set I of G with |I | = x for all x in the interval [t�r

2, t (�r
2 + r − 2)], through the combination

of maximal independent sets of graphs L j . We are still missing all integers on the interval
[t (�r

2 + r − 2) + 1, t (�r
2 + r) − 2] and t (�r

2 + r) for ms(G). For any integer k ∈ {0, . . . , t},
it is possible to combine k maximal independent sets of L j ′ , j ′ = 0, . . . , k, of size �r

2 + r − 2

with t − k maximal independent sets of the remaining L j ′′ , j ′′ = k + 1, . . . , t , with size �r
2+ r,

resulting in a maximal independent set of G with size t (�r
2 + r) − 2k. Thus, all integers on the

set {t (�r
2  + r) − 2k : 0 ≤ k ≤ t} are also on the set ms(G). For r ≥ 3, both (�r

2  + r − 2)

and (�r
2  + r − 3) belong to ms(L j ). So, by taking one maximal independent set of L1 with

size �r
2  + r − 3, k − 1 maximal independent sets of L j ′ , j ′ = 2, . . . , k, of size �r

2 + r − 2,
and t − k maximal independent sets of L j ′′ , j ′′ = k + 1, . . . , t , with size �r

2 + r, we obtain

a maximal independent set of G with size t (�r
2 + r) − 2k − 1, for k = 1, . . . , t . Therefore,

ms(G) = {t�r
2, . . . , t (�r

2 + r) − 2, t (�r
2 + r)}. �

Now we show how to construct a graph Fs , recursively.

Let the graph F1 have the vertex set V (1) = {u(1)
1 , u(1)

2 } and the edge set E (1) = {u(1)
1 u(1)

2 }. For
s ≥ 2, let the graph Fs have the vertex set V (s) = V (s−1) ∪ {u(s)

1 , u(s)
2 } and the edge set

{
E (s) = E (s−1) ∪ {u(s)

1 u(s−1)
2 , u(s)

1 u(s)
2 }, for s even,

E (s) = E (s−1) ∪ {u(s)
2 u(s−1)

2 , u(s)
1 u(s)

2 }, for s odd.

Proposition 12. For s ≥ 1, the graph Fs ∈ M� s
2 and ms(Fs ) = {⌊ s

2

⌋ + 1, . . . , s}.

Tend. Mat. Apl. Comput., 17, N. 3 (2016)
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Proof. By construction, Fs has
⌊ s

2

⌋ + 1 vertices of degree one. Moreover, no pair of such

vertices share a neighbour. Therefore, i(Fs ) ≥ ⌊ s
2

⌋ + 1. For every i = 1, . . . , s, at most one
vertex of {u(i)

1 , u(i)
2 } can be in a maximal independent set of Fs , thus α(Fs ) ≤ s. We conclude the

proof showing how to find in Fs maximal independent sets with sizes in the set {⌊ s
2

⌋+1, . . . , s}.
Let I (0) be the set containing, for i = 0, . . . ,

⌈ s
2

⌉ − 1, the vertices u(2i+1)
2 . If s is even, the

vertex u(s)
2 must be added to I (0). Note that I (0) is a maximal independent set in Fs . For every

j ∈ {1, . . . ,
⌈ s

2

⌉ − 1}, let I ( j ) = (I ( j − 1) \ u(2 j−1)
2 ) ∪ {u(2 j−1)

1 , u(2 j)
1 }.

For j = 0, . . . ,
⌈ s

2

⌉ − 1, I ( j ) is a maximal independent set in Fs and |I ( j )| = ⌊ s
2

⌋ + j + 1,

which implies ms(Fs ) = {⌊ s
2

⌋ + 1, . . . , s}. �

2.2 Proof of Theorem 2

Now we use the graphs Hn and Fn and their different sizes of maximal independent sets to show
a lower bound on the number of possible sizes of maximal independent sets in Pn � Cm , for

n ≥ 3 and m ≥ 4. We restate Theorem 2:

Theorem 2. Let n ≥ 3 and m ≥ 4. If G = Pn � Cm, then G ∈ Mt for some

t ≥
{

n
⌊m

4

⌋
, if m ≡ 0, 2, 3 (mod 4),

n
⌊m

4

⌋ − �n
2 	, if m ≡ 1 (mod 4).

Proof. We consider four cases:

Case 1. m ≡ 0 (mod 4).

Let I be a set {(k, i) : k ≡ 1 (mod 2), i ≡ 0 (mod 4)}. The set I is independent and it has
size m

4

⌊ n
2

⌋
. Let the graph H arise from G by deleting all vertices in NG [I ]. The graph H has m

4
components, and each one is isomorphic to the graph Hn . See Figure 2 for an illustration.

By Proposition 11, H ∈Mn( m
4 ) and

ms(H ) =
{(

m

4

) ⌈n

2

⌉
, . . . ,

(
m

4

)( ⌈n

2

⌉
+ n

)
− 2,

(
m

4

)( ⌈n

2

⌉
+ n

)}
.

By adding the vertices of I , we obtain nm
4 different sizes of maximal independent sets in G,

which are {nm
4 , . . . , nm

2 − 2, nm
2 }.

Case 2. m ≡ 1 (mod 4).

Let I be a set {(k, i) : k ≡ 1 (mod 2), i < m−1, i ≡ 0 (mod 4)}∪{(k, m−4) : k ≡ 0 (mod 4)}∪
{(k, m−1) : k ≡ 2 (mod 4)}. The set I is independent and it has size ((m−1

4

⌊ n
2

⌋
)+⌈ n

2

⌉
). Let G′

be the graph arise from G by deleting all vertices in NG [I ]. The graph G′ has m−1
4 components.
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Figure 2: G = P5 � Cm , with m ≡ 0 (mod 4). The independent set I is formed by the circled
vertices and G \ NG[I ] has m

4 components isomorphic to H5.

Denote by H the graph whose components are the m−5
4 components of G′ isomorphic to the

graph Hn. The last component is isomorphic to the graph Fn . Denote it by H ′. See Figure 3 for
an illustration.

By Proposition 11,

ms(H ) =
{(

m − 5

4

) ⌈n

2

⌉
, . . . ,

(
m − 5

4

)( ⌈n

2

⌉
+ n

)
− 2,

(
m − 5

4

)( ⌈n

2

⌉
+ n

)}
.

By Proposition 12, ms(H ′) = {⌊ n
2

⌋ + 1, . . . , n}. The union of I with any maximal independent
set of H and any independent set of H ′ is a maximal independent set of G.

Considering n ≥ 3, we have that by Proposition 12, ms(H ′) has at least two elements. Moreover,

ms(H ) is an interval with one element missing. Then, ms(G) = {n ⌊m
4

⌋+⌊ n
2

⌋+1, . . . , 2n
⌊m

4

⌋}
and |ms(G)| = n

⌊m
4

⌋ − �n
2 	.
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Figure 3: G = P5 � Cm , with m ≡ 1 (mod 4). The independent set I is formed by the circled
vertices and G\NG [I ] has m−5

4 components isomorphic to H5 and another one isomorphic to F5.
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Case 3. m ≡ 2 (mod 4).

Let I be a set {(k, i) : k ≡ 1 (mod 2), i ≡ 0 (mod 4)} ∪ {(k, m − 1) : k ≡ 0 (mod 2)}. The set I
is independent and it has size ((m+2

4

⌊ n
2

⌋
) + ⌈ n

2

⌉
). Let the graph H arise from G by deleting all

vertices in NG [I ]. The graph H has m−2
4 components, each of which is isomorphic to the graph

Hn . See Figure 4(a) for an illustration. By Proposition 11,

ms(H ) =
{(

m − 2

4

) ⌈n

2

⌉
, . . . ,

(
m − 2

4

)(⌈n

2

⌉
+ n

)
− 2,

(
m − 2

4

)( ⌈n

2

⌉
+ n

)}
.

By adding the vertices of I , we obtain n
⌊m

4

⌋
different sizes of maximal independent sets in G,

which are {n ⌈m
4

⌉
, . . . , nm

2 − 2, nm
2 }.
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(a)

� � � � � � �
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(b)

Figure 4: G = P5 � Cm , with m ≡ 2 (mod 4) (a) and m ≡ 3 (mod 4) (b). The independent set
I is formed by the circled vertices and G \ NG [I ] has �m

4 	 components isomorphic to H5.

Case 4. m ≡ 3 (mod 4).

Let I be a set {(k, i) : k ≡ 1 (mod 2), i ≡ 0 (mod 4)} ∪ {(k, m − 1) : k ≡ 0 (mod 2)}. The set I

is independent and it has size ((m+1
4

⌊ n
2

⌋
) + ⌈ n

2

⌉
). Let the graph H arise from G by deleting all
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vertices in NG [I ]. The graph H has m−3
4 components, each of which is isomorphic to the graph

Hn . See Figure 4(b) for an illustration. By Proposition 11,

ms(H ) =
{(

m − 3

4

) ⌈n

2

⌉
, . . . ,

(
m − 3

4

)( ⌈n

2

⌉
+ n

)
− 2,

(
m − 3

4

)( ⌈n

2

⌉
+ n

)}
.

By adding the vertices of I , we obtain n
⌊m

4

⌋
different sizes of maximal independent sets in G,

which are {n ⌈m
4

⌉
, . . . , n

⌊m
2

⌋ − 2, n
⌊m

2

⌋}. �

3 CONCLUDING REMARKS

Since a vertex in a cylindrical grid graph G can dominate at most 5 vertices, a lower bound for
i(G) is �nm

5 , which gives us an upper bound n�m
2 	 − �nm

5  + 1 for the quantity of different
sizes of maximal independent sets in G. Furthermore, the bound in Theorem 2 is sharp when m

is a multiple of 4 and n is a small value. The technique we have applied may be useful to find
maximal independent sets of different sizes in other graph classes or even in the study of other
problems in Graph Theory.
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RESUMO. Se um grafo G tem exatamente t tamanhos diferentes de conjuntos independentes

maximais, G pertence a uma coleção chamadaMt . Para o produto Cartesiano do grafo Pn , o
caminho de tamanho n, e Cm , o ciclo de tamanho m, chamado grade cilı́ndrica, apresentamos

um método para encontrar conjuntos independentes maximais com diferentes tamanhos e um
limite inferior para t, tal que estes grafos pertençam à Mt .

Palavras-chave: Grafo bem-coberto, conjunto independente maximal, produto Cartesiano.
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