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ABSTRACT. In this paper we investigate the existence of solution for an initial boundary value problem

of the following nonlinear wave equation:

u
′′ − �u + |u|ρ = f in Q̂,

where Q̂ represents a non-cylindrical domain of Rn+1. The methodology, cf. Lions [3], consists of trans-
forming this problem, by means of a perturbation depending on a parameter ε > 0, into another one defined
in a cylindrical domain Q containing Q̂. By solving the cylindrical problem, we obtain estimates that de-
pend on ε. These ones will enable a passage to the limit, when ε goes to zero, that will guarantee, later, a
solution for the non-cylindrical problem. The nonlinearity |uε|ρ introduces some obstacles in the process
of obtaining a priori estimates and we overcome this difficulty by employing an argument due to Tartar [8]
plus a contradiction process.

Keywords: nonlinear problem, non-cylindrical domain, hyperbolic equation.

1 INTRODUCTION

Let us consider the general non-cylindrical initial-boundary value problem:∣∣∣∣∣∣∣∣
u′′ − �u + β

(
∂u
∂x

)+ γ (u) = f in Q̂

u = 0 on �̂

u (x, 0) = u0 (x) , u′ (x, 0) = u1 (x) , x ∈ 	0 .

(1.1)

By Q̂ we represent a bounded increasing domain of Rn × (0, ∞) and �̂ its lateral boundary.

This type of question was initially investigated by J.-L. Lions [3] by applying a method, called by
himself the penalty method, which will be described later. He obtained weak solutions for (1.1)
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196 REMARKS ON A NONLINEAR WAVE EQUATION IN A NON-CYLINDRICAL DOMAIN

for the special case β (s) = 0 and γ (s) = |s|ρ s, ρ > 0 a real number. Cooper and Bardos [1]

extended this result to a larger class of regions by assuming only that there is a smooth mapping
ϕ : Rn × (0, T ) −→ R

n × (0, T ) such that Q∗ = ϕ
(
Q̂
)

is monotone increasing and ϕ preserves
the hyperbolic character of (1.1).

Medeiros [5] generalized the results obtained by Lions [3] in another direction considering the

case of γ (s) as a real continuous function satisfying the condition γ (s) s ≥ 0, for all s ∈ R, and
β (s) = 0.

In Nakao-Narazaki [7] the authors worked with general real continuous functions, with restric-
tions, and obtained existence and decay of the solutions.

In the present work, we shall investigate the existence of weak solutions for (1.1) when β (s) = 0

and γ (s) = |s|ρ .

Let T be a positive real number and let {	t }t∈[0,T ] be a family of bounded open sets of Rn , with
regular boundary �t . We denote by Q̂ the non-cylindrical domain of Rn+1 defined by

Q̂ =
⋃

0<t<T

	t × {t} ,

with regular lateral boundary ∑̂ =
⋃

0<t<T

�t × {t} .

Therefore, we consider the following problem:∣∣∣∣∣∣∣
u

′′ − �u + |u|ρ = f in Q̂
u = 0 on �̂

u (x, 0) = u0 (x) , u
′
(x, 0) = u1 (x) in 	0,

(1.2)

where the derivatives are in the sense of the theory of distributions, � represents the usual spatial
Laplace operator in Rn and ρ is a positive real number satisfying certain conditions.

The methodology, cf. Lions [2], consists of transforming (1.2), by means of a perturbation de-

pending on a parameter ε > 0, into a problem defined in a cylindrical domain Q. Then we have
to solve the cylindrical problem and get estimates to pass to the limit when ε → 0.

Let us consider a bounded open set 	 ⊂ R
n , with C2-boundary � and such that Q̂ ⊂ Q =

	 × (0, T ) (see Fig. 1).

For each ε > 0, we are looking for uε : Q −→ R solution of the problem:∣∣∣∣∣∣∣∣
u

′′
ε − �uε + |uε|ρ + 1

ε
Mu

′
ε = f̃ in Q

uε = 0 on � = � × (0, T )

uε (x, 0) = ũ0 (x) , u
′
ε (x, 0) = ũ1 (x) in 	,

(1.3)

where M is defined by

M (x, t) =
{

1 if (x, t) ∈ Q − Q̂
0 if (x, t) ∈ Q̂,

(1.4)

Tend. Mat. Apl. Comput., 16, N. 3 (2015)
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t

R
n

Ω0

Ωt

Q̂ =
⋃

t∈(0,T )

Ωt × {t}

Q− Q̂

Ω

T

Figure 1: Scheme representing the domains Q and Q̂.

f̃ =
{

f in Q̂
0 in Q − Q̂,

ũ0 =
{

u0 in 	0

0 in 	 − 	0
and ũ1 =

{
u1 in 	0

0 in 	 − 	0.

We call attention to the fact that the nonlinearity |uε|ρ in (1.3) generates some obstacles in the
process of obtaining a priori estimates for the problem (1.3), by the energy method, because, at
a certain point of our proof, we get a term of the type∫

	

|∇uε (t)|2 dx + 1

ρ + 1

∫
	

|uε (t)|ρ uε (t) dx

whose sign cannot be controlled. At this point of the proof we employ an argument due to
Tartar [8] plus contradiction process cf. [6].

2 NOTATIONS AND HYPOTHESES

As usual we represent by L2 (	) the Lebesgue space of square integrable functions on 	. The
spaces L2 (	t ) are identified, for all t ∈ [0, T ], with closed subspaces of L2 (	). We denote by
L p
(
0, T ; L2 (	t )

)
and L p

(
0, T ; H 1

0 (	t )
)

the following spaces

L p
(

0, T ; L2 (	t )
)

=
{
v ∈ L p

(
0, T ; L2 (	)

)
; v (t) ∈ L2 (	t )

}
, 1 ≤ p ≤ ∞

and

L p
(

0, T ; H 1
0 (	t )

)
=
{
v ∈ L p

(
0, T ; H 1

0 (	)
)

; v (t) ∈ H 1
0 (	t )

}
, 1 ≤ p ≤ ∞.

In the following we will denote by (·, ·), |·| and ((·, ·)), ‖·‖ the inner products and norms of the
Hilbert spaces L2 (	) and H 1

0 (	) respectively.

We will develop our work under the following assumptions:

Tend. Mat. Apl. Comput., 16, N. 3 (2015)
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(H1) (Geometric condition) The family {	t }t∈[0,T ] is increasing in the following sense: if

t1 ≤ t2 then 	t1 ⊆ 	t2 .

(H2) (Regularity condition) If v ∈ H 1
0 (	) and v = 0 a.e. in 	 − 	t , then v ∈ H 1

0 (	t );

(H3) (Immersion condition) 1 < ρ ≤ n
n−2 , for n ≥ 3, and ρ > 1, for n = 1 or n = 2.

Remark 1. By Sobolev embedding theorem, we have H 1 (	) ↪→ Lq (	), with 1
q = 1

2 − 1
n , that

is, q = 2n
n−2 for n > 2. In the case n = 1, H 1 (	) ↪→ C

(
	
)
. In the case n = 2, H 1 (	) ↪→

L∞ (	). In the proof of our result, we need the embedding of the space L2ρ (	) into Lρ+1 (	).

As 	 is bounded and ρ > 1, we have, from (H3), that H 1 (	) ↪→ L2ρ (	) ↪→ Lρ+1 (	).

Remark 2. If the boundary �t of 	t is for t ∈ [0, t ] a manifold of class C2 and v = 0 on 	−	t

it implies (H2) . In fact, � is of class C2. Thus, � ∪ �t is of class C2. Therefore, by the trace
theorem

γ0 : H 1 (	 − 	t ) −→ H 1/2 (� ∪ �t) ,

since the boundary of 	 − 	t is � ∪ �t , which is continuous. Thus, for each v ∈ H 1 (	 − 	t ),
we have:

‖γ0v‖H 1/2(�∪�t )
≤ C ‖v‖H 1(	−	t)

.

But v = 0 on 	 − 	t . Thus,
‖γ0v‖H 1/2(�∪�t )

= 0.

Thus, H 1/2 (� ∪ �t ) is a Hilbert space, what implies v = 0 on � ∪ �t . �

3 MAIN RESULTS

The main result of this work is contained in the following Theorem:

Theorem 3.1. Given u0 ∈ H 1
0 (	0), u1 ∈ L2 (	0) and f ∈ L1

(
0, ∞; L2 (	t )

)
. Set

γ (̃u0, ũ1)=
(
|̃u1|2+‖ũ0‖2+ 2

ρ + 1

∫
	

|̃u0|ρ ũ0 dx +∥∥ f̃
∥∥

L1(0,∞;L2(	))

)
e
‖ f̃ ‖L1(0,∞;L2(	)),

where ũ0, ũ1and f̃ are extensions of u0, u1 and f , respectively, and were defined in the previous
section. Suppose, in addition to the hypotheses (H1)-(H3), that

‖ũ0‖ <

(
1

2Cρ+1
0

) 1
ρ−1

(H4)

and

γ (̃u0, ũ1) <
1

2

(
1

2Cρ+1
0

) 2
ρ−1

, (H5)

where C0 is the constant of the embedding of H 1
0 (	) into Lρ+1 (	). Then, there exists a nonlocal

solution for the problem (1.2), satisfying u ∈ L∞ (
0, T ; H 1

0 (	t )
)

and u′ ∈ L∞ (
0, T ; L2 (	t )

)
.

Tend. Mat. Apl. Comput., 16, N. 3 (2015)
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Proof. First we will solve, for each ε > 0, the problem (1.3). Let {wν}ν∈N be an orthonormal

basis of H 1
0 (	). For ε > 0 fixed and each m ∈ N, we consider uεm (x, t) = ∑m

j=1g jm (t)w j (x),
x ∈ 	 and t ∈ [0, Tm), which is solution of the following approximate problem:∣∣∣∣∣∣∣∣∣∣∣∣

(u
′′
εm (t) , w) + (∇uεm (t) , ∇w) + (|uεm (t)|ρ , w

)
+ 1

ε
(M (t) u

′
εm (t) , w) = ( f̃ (t), w)

uεm (0) = ũ0m −→ ũ0 in H 1
0 (	)

u
′
εm (0) = ũ1m −→ ũ1 in L2 (	) ,

(3.1)

for all w ∈ [w1, w2, ..., wm ] = span{w1, w2, ..., wm}.

Remark 3. From (3.1), (H4), (H5) and the Remark 1, there exists m̃ such that, for all m ≥ m̃,
we have

‖ũ0m‖ <

(
1

2Cρ+1
0

) 1
ρ−1

and γ (̃u0m , ũ1m) <
1

2

(
1

2Cρ+1
0

) 2
ρ−1

. (3.2)

Replacing, if necessary, ũ0m and ũ1m for m < m̃, we can consider, from now on, that m̃ = 1.

The local existence, for some Tm > 0, is a consequence of the results about systems of nonlinear
ordinary differential equations.

We need estimates which permit to pass to the limit in the approximate solution uεm (t) when

m goes to infinity and show that (3.1) has a nonlocal solution.

Estimate 1. Taking w = 2u
′
εm (t) in (3.1) we obtain

d

dt

(∣∣∣u ′
εm (t)

∣∣∣2 + ‖uεm (t)‖2 + 2

ρ + 1

∫
	

|uεm (x, t)|ρ uεm (x, t) dx

)
+2

ε

∫
	

M (x, t)
∣∣∣u ′

εm (x, t)
∣∣∣2 dx = 2

(
f̃ (t) , u

′
εm (t)

)
.

(3.3)

Integrating (3.3) from 0 to t < Tm we have∣∣∣u ′
εm (t)

∣∣∣2 + ‖uεm (t)‖2 + 2

ρ + 1

∫
	

|uεm (x, t)|ρ uεm (x, t) dx

+2

ε

∫ t

0

∫
	

M (x, s)
∣∣∣u ′

εm (x, s)
∣∣∣2 dxds

≤ |̃u1m|2 + ‖ũ0m‖2 + 2

ρ + 1

∫
	

|̃u0m |ρ ũ0mdx

+ 2
∫ t

0

∣∣ f̃ (s)
∣∣ ∣∣∣u ′

εm (s)
∣∣∣ ds.

(3.4)

The main question at this point of the proof is that we don’t know the sign of

J (u) = 1

2
‖u‖2 + 2

ρ + 1

∫
	

|u|ρ u dx ,

Tend. Mat. Apl. Comput., 16, N. 3 (2015)
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for u = uεm (t) and u = ũ0m in the inequality (3.4).

To overcome this difficulty we will do some computation. First, we observe that∣∣∣∣∫
	

|uεm (x, t)|ρ uεm (x, t) dx

∣∣∣∣ ≤
∫

	

|uεm (x, t)|ρ+1 dx

= |uεm (t)|ρ+1
Lρ+1(	)

≤ Cρ+1
0 ‖uεm (t)‖ρ+1 ,

(3.5)

since the last inequality is a consequence of the immersion H 1
0 (	) ↪→ Lρ+1 (	), see (H3) and

Remark 1.

From (3.5) we have ∫
	

|uεm (x, t)|ρ uεm (x, t) dx ≥ −Cρ+1
0 ‖uεm (t)‖ρ+1

and thus,

J (u) = 1

2
‖u‖2 + 2

ρ + 1

∫
	

|u|ρ u dx ≥ 1

2
‖u‖2 − 2

ρ + 1
Cρ+1

0 ‖u (t)‖ρ+1 . (3.6)

This functional will be employed for u = uεm(t) and u = ũ0m later.

Therefore, the sign of both sides of (3.4) is related to the sign of the function

P (λ) = λ2

2
− 2

ρ + 1
Cρ+1

0 λρ+1,

for λ ≥ 0 and ρ > 1.

From the definition of P (λ), we observe that it is increasing in the open interval

(
0,

(
1

2Cρ+1
0

)1/(ρ−1)
)

and has a maximum value at
( 1

2Cρ+1
0

)1/(ρ−1). See an example for the graph of P(λ), at Figure 2

bellow, when ρ = 3 and C0 = 0.3.

As J (u) = 1

2
‖u‖2 + 2

ρ + 1

∫
	

|u|ρu dx ≥ P(‖u‖), we can conclude that

‖u‖ ≤
(

1

2Cρ+1
0

)1/(ρ−1)

which implies J (u) ≥ 0. (3.7)

Then, from the equation (3.2), we conclude that

J (ũ0m) = 1

2
‖ũ0m‖2 + 2

ρ + 1

∫
	

|̃u0m|ρ ũ0m dx ≥ 0. (3.8)

Thus, the right hand side of (3.4) is non negative.

Tend. Mat. Apl. Comput., 16, N. 3 (2015)
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P (λ)

λ
(

1

2Cρ+1
0

)1/(ρ−1)

Maximum
value

Figure 2: Graph of P (λ) for ρ = 3 and C0 = 0, 3.

To analyze the left hand side of (3.4) we need the following Lemma:

Lemma 3.1. From the hypotheses (H4) and (H5), it follows that the approximate solution uεm

satisfies

‖uεm (t)‖ <

(
1

2Cρ+1
0

)1/(ρ−1)

, (3.9)

for all t ∈ [0, Tm), m ∈ N and ε > 0 fixed.

Proof. Let us apply a contradiction argument. In fact, suppose there exists m0 ∈ N such that

∥∥uεm0 (t)
∥∥ ≥

(
1

2Cρ+1
0

)1/(ρ−1)

(3.10)

for some 0 < t < Tm0 and ε > 0 fixed. From (3.2) we have

0 ≤ ∥∥uεm0 (0)
∥∥ = ∥∥ũ0m0

∥∥ <

(
1

2Cρ+1
0

)1/(ρ−1)

. (3.11)

From (3.11) and the continuity of
∥∥uεm0 (t)

∥∥, we conclude that there exists t0 > 0 such that

0 ≤ ∥∥uεm0 (t)
∥∥ <

(
1

2Cρ+1
0

)1/(ρ−1)

for all t ∈ (0, t0) .

From (3.10), the set ⎧⎨⎩t > 0;
∥∥uεm0 (t)

∥∥ ≥
(

1

2Cρ+1
0

)1/(ρ−1)
⎫⎬⎭

Tend. Mat. Apl. Comput., 16, N. 3 (2015)
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is non-empty, closed and bounded below. Thus, there exists a minimum for this set that we will

call t∗. By continuity of
∥∥uεm0 (t)

∥∥ we have∣∣∣∣∣∣∣∣∣∣∣

∥∥uεm0 (t)
∥∥ <

(
1

2Cρ+1
0

)1/(ρ−1)

, 0 ≤ t < t∗

∥∥uεm0 (t∗)
∥∥ =

(
1

2Cρ+1
0

)1/(ρ−1)

.

(3.12)

Hence, from (3.12) and (3.7), we observe that, for all t ∈ [0, t∗]

J (uεm0(t)) = 1

2

∥∥uεm0 (t)
∥∥2 + 2

ρ + 1

∫
	

∣∣uεm0 (t)
∣∣ρ uεm0 (t) dx ≥ 0 (3.13)

So, integrating (3.3) from 0 to t ≤ t∗, we obtain the inequality bellow∣∣∣u ′
εm0

(t)
∣∣∣2 + ∥∥uεm0 (t)

∥∥2 + 2

ρ + 1

∫
	

∣∣uεm0 (t)
∣∣ρ uεm0 (t) dx

≤ ∣∣̃u1m0

∣∣2 + ∥∥ũ0m0

∥∥2 + 2

ρ + 1

∫
	

∣∣̃u0m0 (x)
∣∣ρ ũ0m0 (x) dx

+ 2
∫ t

0

∣∣ f̃ (s)
∣∣ ∣∣∣u ′

εm0
(s)
∣∣∣ ds.

(3.14)

From (3.8) and (3.13), both sides of (3.14) are positive.

For the last term of the right side of (3.14), by Young’s inequality, we observe that

2
∫ t

0

∣∣ f̃ (s)
∣∣ ∣∣∣u ′

εm (s)
∣∣∣ ds ≤ ∥∥ f̃

∥∥
L1(0,∞:L2(	))

+
∫ t

0

∣∣ f̃ (s)
∣∣ ∣∣∣u ′

εm0
(s)
∣∣∣2 ds. (3.15)

Therefore, using (3.15) and (3.13) in (3.14) we get, for all t ∈ [0, t∗],∣∣∣u ′
εm0

(t)
∣∣∣2 + 1

2

∥∥uεm0 (t)
∥∥2 ≤ K1 +

∫ t

0

∣∣ f̃ (s)
∣∣ ∣∣u′

εm0
(s)
∣∣2 ds, (3.16)

where K1 = ∣∣̃u1m0

∣∣2 + ∥∥ũ0m0

∥∥2 + 2

ρ + 1

∫
	

∣∣̃u0m0

∣∣ρ ũ0m0dx + ∥∥ f̃
∥∥

L1(0,∞:L2(	))
.

Thus, using Gronwall’s inequality, we can conclude

K1 +
∫ t

0

∣∣ f̃ (s)
∣∣ ∣∣u′

εm0
(s)
∣∣2 ds ≤ K1 e‖ f̃ ‖ , for 0 ≤ t ≤ t∗. (3.17)

Applying (3.17) in (3.16) for t = t∗, we obtain∣∣∣u ′
εm0

(
t∗)∣∣∣2 + 1

2

∥∥uεm0

(
t∗)∥∥2 ≤ K1 e‖ f̃ ‖

and it follows

1

2

∥∥uεm0

(
t∗)∥∥2 ≤

(∣∣̃u1m0

∣∣2 + ∥∥ũ0m0

∥∥2 + 2

ρ + 1

∫
	

∣∣̃u0m0

∣∣ρ ũ0m0dx + ∥∥ f̃
∥∥) e‖ f̃ ‖ ,

Tend. Mat. Apl. Comput., 16, N. 3 (2015)
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The right hand side is equal to γ
(̃
u0m0, ũ1m0

)
and, combining it with (3.2), allows us to con-

clude that ∥∥uεm0

(
t∗)∥∥ <

(
1

2Cρ+1
0

)1/(ρ−1)

,

and this contradicts (3.12). So, the proof of the Lemma 3.1 is finished. �

From (3.9), we have that for all t ∈ [0, Tm)

1

2
‖uεm (t)‖2 + 2

ρ + 1

∫
	

|uεm (t)|ρ uεm (t) dx ≥ 0 ,

thus, from (3.4), it follows∣∣∣u ′
εm (t)

∣∣∣2 + 1

2
‖uεm (t)‖2 + 2

ε

∫ t

0

∫
	

M (x, s)
∣∣∣u ′

εm (x, s)
∣∣∣2 dxds

≤ |̃u1m |2 + ‖ũ0m‖2 + 2

ρ + 1

∫
	

|̃u0m |ρ ũ0mdx

+ 2
∫ t

0

∣∣ f̃ (s)
∣∣ ∣∣∣u ′

εm (s)
∣∣∣ ds.

(3.18)

Applying Gronwall’s inequality to (3.18) we conclude that there exists a constant K2 > 0,
independent of ε, m and t , such that∣∣∣u ′

εm (t)
∣∣∣2 + 1

2
‖uεm (t)‖2 + 2

ε

∫ t

0

∫
	

M (x, s)
∣∣∣u ′

εm (x, s)
∣∣∣2 dxds ≤ K2. (3.19)

Passage to the limit

From the inequality on (3.19) we obtain a subsequence, still denoted (uεm)m∈N, such that

uεm
∗−⇀ uε in L∞ (

0, T ; H 1
0 (	)

)
(3.20)

u′
εm

∗−⇀ u′
ε in L∞ (

0, T ; L2 (	)
)

. (3.21)

To take the limit in the nonlinear term, we define

W (0, T ) =
{

u ∈ L∞ (
0, T ; H 1

0 (	)
)

; u′ ∈ L∞ (
0, T ; L2 (	)

)}
and observe that, since H 1

0 (	)
c

↪→ L2 (	), from compactness theorem of Lions-Aubin [2],

W (0, T )
c

↪→ L2
(

0, T ; L2 (	)
)

.

Observe that, from (3.20) and (3.21), we have

(uεm)m∈N is bounded in W (0, T )
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and, thus, we can extract a subsequence, still denoted by (uεm)m∈N, such that

uεm −→ uε strongly in L2
(

0, T ; L2 (	)
)

≡ L2(Q).

Then, there is a subsequence such that

|uεm |ρ −→ |uε|ρ a.e. in Q. (3.22)

On the other hand, by the hypothesis H3, we have that H 1
0 (	) ↪→ L2ρ (	) and, therefore, by

(3.19), we obtain ∣∣|uεm (t)|ρ ∣∣2L2(	)
= |uεm (t)|2ρ

L2ρ(	)
≤ C2ρ

1 ‖uεm (t)‖2ρ < K3. (3.23)

From (3.22) and (3.23), thanks to Lions [2], Lemma 1.3, we have

|uεm |ρ −⇀ |uε|ρ in L2
(

0, T ; L2 (	)
)

. (3.24)

From (3.20), (3.21) and (3.24) it follows that, for all v ∈ H 1
0 (	),

((uεm , v))
∗−⇀ ((uε, v)) in L∞ (0, T )(|uεm |ρ , v

) ∗−⇀
(|uε|ρ , v

)
in L∞ (0, T )(

Mu′
εm , v

) ∗−⇀
(
Mu′

ε, v
)

inL∞ (0, T ) .

The convergences obtained above allow us to take the limit in the approximate equation, when
m goes to infinity, and get

d

dt

(
u′

ε (t) , v
)+ ((uε (t) , v)) + (|uε (t)|ρ , v) + 1

ε

(
M (t) u′

ε (t) , v
)

= (
f̃ (t) , v

)
inD′

(0, T ) , for all v ∈ H 1
0 (	) .

(3.25)

Applying (3.25) to θ ∈ D (0, T ) it follows that

−
∫ T

0

(
u′

ε (t) , v
)
θ ′ (t) dt −

∫ T

0
〈�uε (t) , v〉H −1(	)×H 1

0 (	) θ (t)dt

+
∫ T

0
(|uε (t)|ρ , v) θ (t) dt + 1

ε

∫ T

0

(
M (t) u′

ε (t) , v
)
θ (t) dt

=
∫ T

0

(
f̃ (t) , v

)
θ (t)dt ,

for all v ∈ H 1
0 (	).

Therefore, (
−
∫ T

0
u′

ε (t) θ ′ (t) dt, v

)
=
〈∫ T

0

(
f̃ (t) + �uε (t) − |uε (t)|ρ − 1

ε
M (t) u′

ε (t)

)
θ (t) dt, v

〉
H −1(	)×H 1

0 (	)

(3.26)
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for all v ∈ H 1
0 (	), that is,

−
∫ T

0
u′

ε (t) θ ′ (t) dt =
∫ T

0
g (t) θ (t) dt inH−1 (	) , (3.27)

where g (t) = f̃ (t) + �uε (t) − |uε (t)|ρ − 1
ε

M (t)u′
ε (t).

Thus, u′′
ε = g in the sense of the distributions.

But,

g =
(

f̃ + �uε − |uε|ρ − 1

ε
M (t) u′

ε

)
∈ L1

(
0, T ; H−1 (	)

)
and therefore,

u′′
ε − �uε + |uε|ρ + 1

ε
M (t) u′

ε = f̃ in L1
(

0, T ; H−1 (	)
)

. (3.28)

We will study the initial conditions on (3.28). From the convergences (3.20) and (3.21) we obtain
that uεm(0) −⇀ uε(0) as m → ∞ in L2(	). Then, using the approximate problem (3.1), we

conclude that
uε(0) = ũ0. (3.29)

From the approximate problem (3.1) we have, for all v ∈ Vm and almost every t ∈ [0, T ],

(u′′
εm(t), v) =

(
f̃ − |uεm(t)|ρ − 1

ε
M(t)u′

εm(t), v

)
− (∇uεm , ∇v) .

As u′′
εm(t) ∈ Vm , we can conclude, for almost every t ∈ [0, T ],

‖u′′
εm(t)‖H −1(	) ≤ C1

(
| f̃ | + |uεm(t)|ρ

L2ρ(	)
+ 1

ε
|M(t)u′

εm(t)|
)

+ ‖uεm(t)‖, (3.30)

where C1 is the constant of the embedding of H 1
0 (	) into L2(	).

From (3.19) and (3.30), we obtain that
∥∥u′′

εm

∥∥
L1(0,T ;H −1(	))

≤ K3, not depending on m and ε

and, then, u′′
εm

∗−⇀ u′′
ε in L1(0, T ; H−1(	)). This convergence, (3.21) and (3.1) imply that

u′
ε(0) = ũ1. (3.31)

Now, to finish the proof of theorem 3.1, we need take the limit when ε goes to zero.

In fact, note that from (3.19), we have the same estimates in ε as those obtained for m. That is,∣∣u′
ε (t)

∣∣2 + ‖uε (t)‖2 + 1

ε

∫ t

0

∫
	

M (x, s)
∣∣u′

ε (x, s)
∣∣2 dxds ≤ K3. (3.32)

Thus, there exists a subsequence, still denoted by (uε)ε>0, such that

uε
∗−⇀ w in L∞ (

0, T ; H 1
0 (	)

)
(3.33)

u′
ε

∗−⇀ w′ in L∞ (
0, T ; L2 (	)

)
. (3.34)
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Applying, as above, the same arguments of compactness, it follows

|uε|ρ −⇀ |w|ρ in L2
(

0, T ; L2 (	)
)

. (3.35)

Also, by (3.32), we have ∫ t

0

∫
	

M (x, s)
∣∣u′

ε (x, s)
∣∣2 dxds ≤ εK3. (3.36)

The limitation in (3.36), combined with the convergence in (3.34), allows us to conclude that

M (x, t)w′ (x, t) = 0 in Q

and thus, see the definition of M in (1.4),

w′ = 0 a.e. in Q − Q̂. (3.37)

As w (x, 0) = ũ0 (x), then w (x, 0) = 0 in 	 − 	0 and, therefore, by (3.37) and the geometric

condition (H1),
w = 0 a.e. in Q − Q̂. (3.38)

By (3.38) and the fact that w (t) ∈ H 1
0 (	), it follows, from the regularity condition (H2), that

w (t) ∈ H 1
0 (	t ). That is,

w ∈ L∞ (
0, T ; H 1

0 (	t )
)

.

From (3.32), we observe that there is a subsequence of 1√
ε

M(t)u′
ε(t) that converges weakly to

some function in L2(0, T ; L2(	)) when ε tends to zero. Then, passing to the limit the equation

(3.28), we observe that w could not be a weak solution for the PDE u′′ − �u + |uρ | = f over
all the extended domain Q. But, as M vanishes at Q̂, we can consider the restriction of w to Q̂
and the theorem will be proved.

If we denote by u, the restriction of w to Q̂, we have that

u ∈ L∞ (
0, T ; H 1

0 (	t )
)

u′ ∈ L∞ (
0, T ; L2 (	t )

)
.

On the other hand, from (3.28), by restriction to Q̂, we obtain, in the sense of distributions

û′′
ε − �ûε + |̂uε |ρ = f , (3.39)

where ûε denote the restriction of uε to Q̂.

Finally, from (3.33) − (3.35) we can pass to the limit in (3.39), when ε goes to zero and we can
obtain, in the sense of distributions,

u′′ − �u + |u|ρ = f .

The initial conditions for the problem (1.2) follow from (3.29) and (3.31) and the same kind of
arguments used to show these equations.
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RESUMO. Nesse artigo investigamos a existência de solução para um problema de valor

inicial e de contorno associado à seguinte equação da onda não linear

u
′′ − �u + |u|ρ = f em Q̂ ,

onde Q̂ representa um domı́nio não cilı́ndrico do Rn+1. A metodologia, conforme Lions

[3], consiste em transformar o problema original, por meio de uma perturbação dependendo

de um parâmetro ε > 0, em um outro definido em um domı́nio cilı́ndrico Q que contêm

Q̂. Resolvendo o problema no domı́nio cilı́ndrico, obtemos estimativas que dependem de ε.

Tais estimativas nos permitirão tomar o limite, quando ε tende a zero, garantindo assim a

existência de uma solução para o problema não cilı́ndrico. A não linearidade |u|ρ introduz

alguns obstáculos no processo de obtenção das estimativas, tais dificuldades são superadas por

meio de um argumento devido a Tartar [8] combinado com um argumento de contradição.

Palavras-chave: problema não linear, domı́nio não cilı́ndrico, equação hiperbólica.
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