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ABSTRACT. A discrete metapopulation model with temporal dependent migration is proposed in order to
study the stability of synchronized dynamics. During each time step, we assume that there are two processes
involved in the population dynamics: local patch dynamics and migration process between the patches that
compose the metapopulation. We obtain an analytical criterion that depends on the local patch dynamics
(Lyapunov number) and on the whole migration process. The stability of synchronized dynamics depends
on how individuals disperse among the patches.
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1 INTRODUCTION

The forms of dispersion in a metapopulation system (populations of single-species that live in
fragments called patches) can induce the whole system to multiple behaviors [1, 3, 4, 7, 13].

An interesting behavior related to the dispersal process is the synchronized dynamics where
the populations in all patches evolve with the same density [11]. Its importance lies in the fact
that if the whole metapopulation is not synchronized and a local population is extinct, it can be

recolonized by individuals that migrate from neighboring patches (“rescue effect”), favoring the
population persistence [2]. A considerable number of populations that live in distinct regions
tend to cycle in synchrony. A well-documented example is the Canadian lynxes that presents

synchronized dynamics in its densities fluctuations due to weather conditions [2, 11]. Another
example is the vole populations in Norway that synchronize due to dispersal processes and birds
predation [8].

Systems of discrete equations are often used to model metapopulations [1, 4, 7, 13]. A metapop-

ulation model with patches linked by migration and subjected to external perturbations was con-
sidered in [1]. The model is a discrete-time system composed by single species where a constant
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32 THE INFLUENCE OF TEMPORAL MIGRATION IN THE SYNCHRONIZATION OF POPULATIONS

fraction disperses per generation. Through numerical simulations, it was shown that chaos can

prevent global extinctions when coupling is weak. In [4] was obtained an analytical result for the
stability of synchronized trajectories by considering a model with an arbitrary number of patches
linked by dispersal. An analytical result examining a special case of density-dependent dispersal

was obtained in [13], concluding that this mechanism reduces the stability regions of the syn-
chronous dynamics. Nevertheless, density independent dispersal is observed in the dispersal of
insects, while density-dependent dispersal is observed in such widely different invertebrates as

locusts, snails and copepods [6]. In this paper, we present a metapopulation model similar to
the ones described in [1, 4, 13]. The main difference is the assumption of temporal dependent
migration. This assumption can be used in order to describe the movements of species that move

to other areas in different periods due to weather conditions or dependence of foraging resources.

In Section 2 we present the metapopulation model with temporal dependent migration. In Sec-
tion 3 we analyze the asymptotic local stability of synchronized trajectories and obtain a criterion
to its stability based on the calculation of the transversal Lyapunov numbers. In Section 4 we

present numerical simulations. Final comments and discussion are done in Section 5.

2 METAPOPULATION MODEL

The metapopulation model consists of d equal patches labeled as 1, 2, . . . , d . We assume that
the processes of survival and reproduction which compose the local dynamics is described by a

map f on [0, ∞) of class C1. In the absence of dispersal between patches, the time evolution of
the population is given by

xt+1 = f (xt ), t = 0, 1, 2, . . . , (2.1)

where xt represents the number of individuals at time t .

We assume that a fraction of individuals leaves patch i and disperses to the neighboring patches.
We assume that the migration fraction is temporal dependent, that is, it is given by a map on
[0,1] such that mt+1 = g(mt ), where mt is the migration fraction at time t . Thus, the density

of individuals that leaves patch i is given by mt f (xi
t ), where xi

t denotes the population density
in patch i at time t , for all i = 1, . . . , d , t = 0, 1, . . .. Moreover, from individuals that disperse
from neighboring patches k, a fraction γik reaches patch i. The dispersal fractions of individuals

that migrate among the patches is described by a nonnegative matrix � with entries γik , i, k =
1, 2, . . . , d . Each γik represents the fraction of individuals coming from patch k that will settle
in patch i (Fig. 1). We assume that there is no loss of individuals and the individuals do not

return to the original patch, therefore
∑d

i=1 γik = 1 and γkk = 0 for all k = 1, . . . , d . Taking
these into consideration, we can write a system of equations describing the dynamics of the
metapopulation by

xi
t+1 = (1 − mt ) f (xi

t ) +
d∑

k=1

γikmt f (xk
t ). (2.2)

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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The first term in equation (2.2) represents the individuals that did not leave patch i at time t ,

while the second term is the sum of all contributions of individuals from neighboring patches.

Figure 1: Schematic represetation of the migration process. After patch local dynamics, a frac-

tion of individuals mt leaves patch k at time step t . From these individuals a fraction γik moves
to patch i. Thus, the fraction of individuals that leaves patch k and reaches patck i is mtγik .

3 SYNCHRONIZATION AND TRANSVERSAL STABILITY

We assume that synchronization is achieved if the population density of all patches is the same,
that is, xi

t = xs
t , for all i = 1, 2, . . . , d and t = 0, 1, 2, . . .. Synchronized solutions of the

system (2.2) may not exist if the system lacks some symmetry. Substitution of xi
t = xs

t in

equation (2.2) leads us to the existence of such synchronized solution provided
∑d

k=1 γik =
1, i = 1, 2, . . . , d . Furthermore, the dynamics of each patch in the synchronized state satisfies
xs

t+1 = f (xs
t ) which is equivalent to equation (2.1), the single patch model equation. In other

words the metapopulation synchronizes with the same dynamics of a single isolated patch.

We are interested in studying the local asymptotic stability of the synchronized state, that is,
whether orbits that initiate close to the synchronized state will be attracted to it. In order to
achieve this goal, we linearize the equation (2.2) around the synchronized trajectory, obtaining

�t+1 = J (xs
t )�t , (3.3)

where �t ∈ Rd is the perturbation of the synchronized trajectory, and J (xs
t ) is the d ×d Jacobian

matrix of system (2.2) evaluated at xs
t , where xs

t = (xs
t , xs

t , . . . , xs
t ) ∈ Rd . Notice that the

Jacobian matrix J (xs
t ) has its entries given by

αik =
{

(1 − mt ) f
′
(xs

t ), if i = k;

γikmt f
′
(xs

t ), if i �= k.

Thus, it can be written as
J (xs

t ) = (I − mt B) f
′
(xs

t ), (3.4)

where I is the identity matrix and B = I − �.

It is important to notice that the connectivity matrix � is doubly stochastic (all rows and columns
add up to one). An application of the Perron-Frobenius Theorem [9] leads to the fact that λ0 =
1 is the dominant eigenvalue of �. Moreover, its eigenspace is spanned by the vector �1 =
[1 1 . . . 1]T ∈ Rd which correspond to the in-phase state, that is, the diagonal of the
phase space

(
x1

t = x2
t = . . . = xd

t

)
.

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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We assume that � is diagonalizable which allows us to express the Jacobian matrix as a diagonal

matrix and the local stability of the synchronized state can be analyzed through the diagonal
terms. With this assumption, there exists an invertible matrix Q such that

� = Qdiag(1, λ1, . . . , λd−1)Q−1.

It allows us to write the Jacobian matrix (3.4) in the following diagonal form

J (xs
t ) = Q

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0

0 1 − mt + λ1mt
. . .

...
...

. . .
. . . 0

0 . . . 0 1 − mt + λd−1mt

⎞
⎟⎟⎟⎟⎟⎠ f

′
(xs

t )Q−1. (3.5)

Thus, the synchronized state will be stable if transversal perturbations to the synchronized state
shrink to zero. To reach this goal, we define the maximum transversal Lyapunov number, K , by

K (xs
0, m0) = max

i=1,...,d−1
lim

τ→∞ ‖Pτ−1,i · . . . · P1,i P0,i‖1/τ , (3.6)

where Pt ,i = f
′
(xs

t )(1 − mt + λi mt ). Consequently, the transversal perturbation tends to zero if
K (xs

0, m0) < 1.

Observe that

|Pτ−1,i · . . . · P0,i |

=
(τ−1∏

t=0

| f
′
(xs

t )|
)

|(1 − mτ−1 + λimτ−1) · . . . · (1 − m0 + λim0)|,
(3.7)

thus, we can write the maximum transversal Lyapunov number as

K (xs
0, m0) = L(xs

0)�(m0), (3.8)

where

L(xs
0) = lim

τ→∞ (

τ−1∏
t=0

| f
′
(xs

t )|)1/τ (3.9)

is the Lyapunov number of f starting at xs
0 and

�(m0) = max
i=1,2,...,d−1

lim
τ→∞ (|(1 − mτ−1 + λi mτ−1) · . . . · (1 − m0 + λim0)|)1/τ (3.10)

is a quantifier that depends on the initial migration rate.

Let ρ be the natural probability measure for the local map f . Let ν be the natural probability
measure for map g. Assuming the integrability of ln+ | f

′
(x)| and ln+ |1 − λm| with respect to ρ

and ν, we can apply the Ergodic Theorem of Birkhoff [5] to guarantee the existence and unique-
ness ρ-almost every xs

0 of the limit defining L , and ν-almost every m0 of the limit defining �

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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and state a criterion for the local asymptotic stability of an attractor in the synchronized invariant
state given by

K = L� < 1, (3.11)

where

L = exp

( ∫ ∞

0
ln | f

′
(x)|dρ(x)

)
. (3.12)

and

� = max
i=1,...,d−1

exp

( ∫
[0,1]

ln | 1 − mλi |
)

dρ(m). (3.13)

Notice that L depends on the patch local dynamics while � depends on the whole migratory
process. It is important to observe that the evolution of the term that corresponds to the value
1 in the Jacobian matrix (3.5) is exactly the Lyapunov number and it gives the behavior of the
synchronized trajectory within the phase space diagonal, that is, a periodic trajectory (L < 1) or
a chaotic trajectory (L > 1).

In the following, we calculate the quantifier given in (3.13) to different temporal migration rules.
In subsection 3.1 we assume that the map g that generates the temporal migration fractions has a
stable cycle and a periodic behaviour. In subsection 3.2 we assume the temporal migration rates
are given by a uniform distribution.

3.1 Temporal migration given by a Dirac measure

A Dirac measure is a measure δy defined on a set E such that

δy =
{

1, y ∈ E ;
0, c.c..

(3.14)

Let δm0 denote the Dirac measure centered on the fixed migration rate m0. Thus, we have

� = max
i=1,...,d−1

exp

( ∫
[0,1]

ln | 1 − mλi | dδm0

)

= max
i=1,...,d−1

exp(ln | 1 − m0λi |)
= max

i=1,...,d−1
(| 1 − m0λi |).

(3.15)

In this case, the criterion established in (3.11) is the same established by Earn et al. [4] that
considered a metapopulation with any number of patches arbitrarily connected.

If we assume that the probability measure is concentrated in two periodic points, m0 and m1, we
have

� = max
i=1,...,d−1

exp

( ∫
[0,1]

ln | 1 − mλi | dδm0,m1

)

= max
i=1,...,d−1

exp

(
ln | 1 − m0λi | + ln | 1 − m1λi |

2

)
= max

i=1,...,d−1
exp(ln(| 1 − m0λi | · | 1 − m1λi |) 1

2 )

= max
i=1,...,d−1

(| 1 − m0λi | · | 1 − m1λi |) 1
2 .

(3.16)

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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36 THE INFLUENCE OF TEMPORAL MIGRATION IN THE SYNCHRONIZATION OF POPULATIONS

In this case, the quantifier � is the geometric average of (1 − m0λi) and (1 − m1λi ). In fact,

if the migration rates are distributed in p periodic points, m0, m1, . . . , m p−1, the quantifier � is
given by the following geometric average

� = max
i=1,...,d−1

( | 1 − m0λi | · . . . · | 1 − m p−1λi | ) 1
p . (3.17)

3.2 Temporal migration given by a uniform distribution

Now we assume that the temporal migration rates are given by a uniform distribution. In our
case, the probability density function with a uniform distribution on a set [a, b] ⊂ [0, 1] is

p(m) =

⎧⎪⎪⎨
⎪⎪⎩

p1 = 0, 0 ≤ m < a;

p2 = 1
b−a , a ≤ m < b;

p3 = 0, b ≤ m < 1.

(3.18)

Observe that ρ(m) = ∫ 1
0 p(m)dm = ∫ b

a
1

b−a dm = 1. Besides that, we can write (3.13) as

� = max
i=1,...,d−1

exp

(
1

b − a

∫
[a,b]

ln | 1 − mλi | dm

)
. (3.19)

The above integral can be solved analytically resulting

� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
i=1,...,d−1

1

e

(
(1 − aλi)

(1−aλi )

(1 − bλi)(1−bλi )

) 1
λi (b−a)

, if 0 ≤ m < 1
λi

;

max
i=1,...,d−1

1

e

(
(bλi − 1)(bλi−1)

(aλi − 1)(aλi−1)

) 1
λi (b−a)

, if 1
λi

≤ m ≤ 1.

(3.20)

In the following, we perform numerical simulations to illustrate the stability regions of synchro-
nized solutions and present the values of the quantifier � to different temporal migration rules.

4 NUMERICAL SIMULATIONS

We perform numerical simulation to illustrate the behavior of our network of patches connected
by temporal dependent migration. In order to determine whether synchronization occurs we

define the synchronization error, et , by

et = 1

d

d∑
i=1

∣∣xi
t − xi+1

t

∣∣ (4.21)

where xd+1
t = x1

t . Synchronization is detected when et → 0.

We consider that the local dynamics is given by the following Ricker function

f (x) = xer(1−x), (4.22)

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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where x represents the patch density and r is the intrinsic growth rate (r > 0). The dynamics

of a local habitat with the Ricker model is well-known and exhibits equilibrium, periodic and
chaotic dynamics depending on the growth rate [10]. For 0 < r < 2, the local dynamics become
a state of equilibrium. For 2 < r < 2.526, the equilibrium point is unstable and a two-periodic

trajectory takes its place. As r is increased, there appears a four-periodic trajectory and the two-
periodic become unstable and we can observe period doubling bifurcations to chaos. In order
to simulate chaotic within patch dynamics we assume r = 3.1, which implies that the isolated

patch model has a chaotic trajectory with Lyapunov number L ≈ 1.327.

The configuration matrix � can be defined in different forms. Two well-known configurations are
the nearest neighbor coupling and the global coupling [4]. We illustrate our results considering
the patches linked in a ring format with the two-nearest neighbors coupling, whose configuration

matrix, �, is given by

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1/2 0 . . . 0 1/2

1/2 0 1/2 0 . . . 0

0 1/2
. . .

. . .
. . .

...
...

. . .
. . . 0 1/2 0

0 . . . 0 1/2 0 1/2
1/2 0 . . . 0 1/2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.23)

In this case, the eigenvalues of � are given by λ0 = 1 and λi = cos
(2π i

d

)
, i = 1, 2, . . . , d − 1.

Of course, other local patch dynamics and configuration network topologies could be used, but
our main concernment is to show the different behavior generated by temporal migration rates.

Figure 2 shows the bifurcation diagram of the synchronization error and the respective maximum
transversal Lyapunov number versus the migration rate. In all cases, individuals migrate with the

same rate at time t . We can observe that the non-synchronization region is characterized by weak
interaction. Moreover, the increase in the number of patches decreases the synchronization region
and increase the maximum transversal Lyapunov number. In fact, the subdominant eigenvalue

of the matrix � tends to one as n → +∞ (λi → 1 as d → +∞, i = 1, 2, . . . , d − 1), thus
the quantifier � given in (3.15) also tends to one as d → +∞ (see [12]). It means that the
stability criterion will approach to the Lyapunov number if we increase the number of patches.
Moreover, the synchronized attractors will be unstable for any value of the migration rate if the

local dynamics of a single isolated patch is chaotic (L > 1).

Figure 3 shows the metapopulation behavior with periodic migration. We consider 5 patches and
three different scenarios. In all cases, individuals migrate according to a two periodic rule. In the
first case, individuals migrate with a periodic rate given by 0.1 and m (Fig. 3(a)). In the second

case, the migration rates are given by 0.5 and m (Fig. 3(b)), while in the third case it is given by
0.9 and m (Fig. 3(c)). We can observe that weak interactions between the patches decreases the
region of synchronization, while intermediate and high migration rates have an oppositive effect.

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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Figure 2: Synchronization error ((a), (b) and (c)) and respectably maximum transversal Lya-

punov number ((d), (e) and (f)) vs m. Local dynamics is given by the Ricker function
f (x) = x exp(r(1 − x)) with r = 3.1. The patches are coupled with the two-nearest neigh-
bors coupling. (a) 2 patches. (b) 5 patches. (c) 10 patches.
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Figure 3: Synchronization error ((a), (b) and (c)) and respective maximum Lyapunov number
((d), (e) and (f)) vs m. Local dynamics is given by the Ricker function f (x) = x exp(r(1 − x))

with r = 3.1. Five patches are coupled with the two-nearest neighbors. (a) m0 = m and

m1 = 0.1. (b) m0 = m and m1 = 0.5. (c) m0 = m and m1 = 0.9.

Table 1 shows different migration rules and the values of the quantifier �. We observe that, if the
temporal migration rates are distributed around an average, the values of the quantifier � won’t
change its values significantly. In Table 1 the migrations rates are distributed around an average

of m = 0.3. In all cases, we observe that the values of � do not change its value significantly
due to different migration rules when compared with the average of the migration rates.

Tend. Mat. Apl. Comput., 16, N. 1 (2015)
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Table 1: Quantifier � for different temporal migration rates. Temporal migration rates are
distributed around m = 0.3. We can observe that the values of � do not change significantly.

Fixed Point Period 2 Period 4 Uniform Uniform

m 0.3 0.2 and 0.4 0.15, 0.25, 0.35 and 0.45 [0.2, 0.4] [0.1, 0.5]
� 0.7927 0.78968 0.78892 0.7916 0.7887

5 DISCUSSION

In this paper we develop a model of a network of equal patches linked by temporal dependent
migration. The time evolution of the system involves two processes: local patch dynamics and
migration between the patches. We then analyze the phenomenon of synchronization between
the patches. We obtain an analytical criterion for the local asymptotic stability of synchronized
trajectories based on the computation of the transversal Lyapunov numbers of attractors on the
synchronous invariant manifold. The criterion is obtained via linearization process around the
synchronized trajectories. The criterion is given by the product of two quantifiers: the separation
rate of two nearby orbits in the single isolated patch measured by the Lyapunov number, L , and a
quantifier that depends on the whole migration process, � (eq. 3.11 ). We then calculate the value
of this quantifier to different migration rules. At first, we describe � assuming the migration rate
with a periodic behavior (eq. 3.17), we then consider the migration rate uniform distributed on
the interval [a, b] ⊆ [0, 1] (eq. 3.20). The quantifier � in the case of migration rates with a
periodic behavior involves the migration rates and the eigenvalues of the matrix that inform the
network topology between the patches, while in the case of uniform distribution also involves
the size of the interval.

Our observation based on theoretical results and on numerical simulations reveals the impor-
tance of analyzing a metapopulation model with temporal migration. We performed numerical
simulation assuming each patch dynamics given by Ricker map with chaotic behavior. Then, we
analyze the influence that the migration process has over synchronized dynamics. We observe
that an increase in the number of patches decrease the stability regions (Fig. 2). Besides that,
weak interactions between patches, decreases the size of stability regions, while intermediate
and high migration rates have an opposite effect (Fig. 3). We observe that, if the temporal migra-
tion rates are distributed around an average, the values of quantifier � do not change significantly
(Table 1).

RESUMO. Um modelo metapopulacional com migração dependente do tempo é proposto a

fim de estudarmos a estabilidade de trajetórias sincronizadas. Durante cada geração, consi-

deramos que existem dois processos na dinâmica populacional: a dinâmica local e a migra-

ção entre os sı́tios que compõem a metapopulação. Obtemos um critério para a ocorrência

de sincronização que depende da dinâmica local (número de Lyapunov) e de todo o processo

migratório. A estabilidade de trajetórias sincronizadas depende de como os indivı́duos

migram entre os sı́tios.

Palavras-chave: metapopulação, migração dependente do tempo, sincronização.

Tend. Mat. Apl. Comput., 16, N. 1 (2015)



�

�

“main” — 2015/4/27 — 10:56 — page 40 — #10
�

�

�

�

�

�

40 THE INFLUENCE OF TEMPORAL MIGRATION IN THE SYNCHRONIZATION OF POPULATIONS

REFERENCES

[1] J.C. Allen, W.M. Schauffer & D. Rosko. Chaos reduces species extinction by amplifying local popu-

lation noise. Nature, 364 (1993), 229–232.

[2] B. Blasius, A. Huppert & L. Stone. Complex dynamics and phase synchronization in saptially ex-
tended ecological systems. Nature, 399 (1999), 353–359.

[3] M. Doebeli. Dispersal and Dynamics. Theor. Pop. Biol., 47 (1995), 82–106.

[4] D.J., Earn, S.A. Levin & P. Rohani. Coherence and Conservation. Science, 290 (2000), 1360–1364.

[5] J.P. Eckmann & D. Ruelle. Ergodic Theory of chaos and strange attractors. Rev. Modern Phys.,
57 (1985), 617–656.

[6] L. Hansson. Dispersal and connectivity in metapopulations. Biol. J. Linn. Soc., 42 (1991), 89–103.

[7] M. Heino, V. Kaitala, E. Ranta & J. Lindström. Synchronous dynamics and rates of extinction in
spatially structured populations. Proc. R. Soc. London B, 264 (1997), 481–486.

[8] R.A. Ims & H.P. Andreassen.Spatial synchronization of vole population dynamics by predatory birds.

Nature, 408 (2000), 194–196.

[9] P. Lancaster & M. Tismenetsky. The Theory of Matrices, Academic Press, London (1985).

[10] R.M. May. Biological populations with nonoverlapping generations: stable points, stable cycles, and

chaos. Science, 186 (1974), 645–647.

[11] R.M. May & A.L. Lloyd. Synchronicity, chaos and population cycles: spatial coherence in an uncer-
tain world. Trends Ecol. Evol., 14 (1999), 417–418.

[12] J.A.L. Silva, M.L. De Castro & D.A.R. Justo. Synchronism in a metapopulation model. Bull. Math.

Biol., 62 (2000), 337–349.

[13] J.A.L. Silva & F.T. Giordani. Density-dependent migration and synchronism in metapopulations.

Bull. Math. Biol., 68 (2006), 451–465.

Tend. Mat. Apl. Comput., 16, N. 1 (2015)


