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Abstrat. This work desribes the appliation of new methodologies for the eval-

uation of the inverse Fourier transforms that yield Green's funtions for both the

wave and Helmholtz equations in the entire bidimensional domain.

Keywords. Wave equation, two dimensions, Green's funtion.

1. Introdution

Green's funtions for wave problems, both time-dependent and stationary ones,

governed by the wave and Helmholtz equations, respetively, in unbounded domains

having one, two or three dimensions have well known expressions (f. referene [1℄,

setions 11.2 and 13.2.2). The Fourier transform serves well in their determination,

but the evaluation of the inversion integral in two dimensions � the ase onsidered

in this work � is the most hallenging.

For the Helmholtz equation, referene [9℄, on pp. 822-824, states that the in-

version an be performed by using ontour integration together with a hange of

omplex variables of the type given in equation (2.10) below, but does not reveal

the steps of the alulation. Later on, referene [4℄, on pp. 173-176, shows a little

more thereof, but still as an outline whih is hard to follow.

It is thus our purpose to o�er here a detailed desription of this methodology,

but, to make an innovation, we apply it to the wave equation. Both retarded

(Setion 2) and advaned (Setion 3) Green's funtions are alulated. Green's

funtions for the Helmholtz equation are also obtained as a by-produt (Setion 4).

We onlude the exposition with �nal omments (Setion 5).
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2. Retarded Green's Funtion for the Wave Equa-

tion

Green's funtion G(~r, t |~r ′, t′) for the wave equation in a boundless two-dimensional

domain is the solution of

∇2G(~r, t |~r ′, t′)− 1

c2
∂2G

∂t2
= δ(~r − ~r ′) δ(t− t′) , (2.1)

with ~r and ~r ′
in R

2
, and t and t′ in R. In this setion, we onsider the retarded or

ausal Green's funtion, for whih

G(~r, t |~r ′, t′) = 0 if t < t′ . (2.2)

To solve the problem de�ned by (2.1) and (2.2), we �rst take the Fourier trans-

form of (2.1) with respet to t, obtaining

∇2G̃(~r, ω |~r ′, t′) + (ω/c)2G̃ = δ(~r − ~r ′) eiωt′/
√
2π , (2.3)

where

G̃(~r, ω |~r ′, t′) ≡ Ft{G(~r, t |~r ′, t′)} =
1√
2π

∫ ∞

−∞

dt eiωtG(~r, t |~r ′, t′) .

To ompute the inverse transformG = F
−1
t {G̃} = (2π)−1/2

∫∞

−∞ dω e−iωtG̃, we mod-

ify this formula a little, by splitting the integral in the intervals (−∞, 0) and (0,∞)
and performing the hanging of variable ω → −ω in the �rst integral, obtaining

G(~r, t |~r ′, t′) =
1√
2π

∫ ∞

0

dω
[
e−iωtG̃(~r, ω |~r ′, t′) + eiωtG̃(~r,−ω |~r ′, t′)

]
. (2.4)

By using this formula, we avoid negative values of ω, what simpli�es the develop-

ment of the method.

Next, adopting the Cartesian oordinates x and y of ~r, in terms of whih ∇2G̃ =
∂2G̃/∂x2 + ∂2G̃/∂y2 and δ(~r − ~r ′) = δ(x − x′)δ(y − y′), we take another Fourier

transform, now with respet to y, obtaining

d2 ¯̃G

dx2
(x, k, ω |x′, y′, t′)−

(

k2 − ω2

c2

)

¯̃G =
ei(ky

′+ωt′)

2π
δ(x− x′) , (2.5)

where

¯̃G(x, k, ω |x′, y′, t′) ≡ Fy{G̃(x, y, ω |x′, y′, t′)} =
1√
2π

∞∫

−∞

dy eikyG̃(x, y, ω |x′, y′, t′) .

We then solve the ordinary di�erential equation (2.5) under the onditions of

ontinuity and �niteness for all x as well as an extra ondition (as a onsequene

TEMA Tend. Mat. Apl. Comput., 14, No. 1 (2013), 119-130.

doi: 10.5540/tema.2013.014.01.0119



New Methodologies for the Calulation of Green's Funtions 121

of the delta funtion) whih follows from its integration in the in�nitesimal interval

(x′ − ε, x′ + ε) {f. [2℄, setion 12.2}:

∫ ε

−ε

dx
d2 ¯̃G

dx2
(x, k, ω |x′, y′, t′)−

(

k2 − ω2

c2

)∫ ε

−ε

dx ¯̃G =
ei(ky

′+ωt′)

2π

∫ ε

−ε

dx δ(x− x′) .

The seond integral above tends to zero, beause it is the integral of a ontinuous

funtion in a in�nitesimal interval, and the last integral is equal to one. Carrying

out the �rst integral and letting ε → 0+, we obtain the jump ondition for d ¯̃G/dx
at x = x′

:

d ¯̃G

dx
(x′+, k, ω |x′, y′, t′)− d ¯̃G

dx
(x′−, k, ω |x′, y′, t′) =

ei(ky
′+ωt′)

2π
. (2.6)

Notie that (2.5) is a homogeneous di�erential equation, exept for x = x′
; its

solution for k 6= ω/c is thus of the form

¯̃G(x, k, ω |x′, y′, t′)
∣
∣
∣
k 6=ω

c

=

{
c1 e

(a+bi)x + c2 e
−(a+bi)x (x < x′)

d1 e
(a+bi)x + d2 e

−(a+bi)x (x > x′) .
(2.7)

In this equation,

√

k2 − ω2/c2 ≡ ±(a+bi) (deomposition of the square roots in

their real and imaginary parts). Also, beause of (2.6), it was neessary to onsider

arbitrary onstants for x < x′
, c1 and c2, di�erent from those for x > x′

, d1 and

d2. These onstants are to be determined by imposing the �niteness, ontinuity

and jump onditions. One found

¯̃G(x, k, ω |x′, y′, t′), we an begin alulating the

inverse Fourier transforms, F
−1
y { ¯̃G} = G̃ �rst:

G̃(x, y, ω |x′, y′, t′) =
1√
2π

∫ ∞

−∞

dk e−iky ¯̃G(x, k, ω |x′, y′, t′) . (2.8)

But before doing so, let us make three observations:

1. For real k and ω (variables introdued in the Fourier transforms), either a or

b vanishes, that is, ab = 0. But, in this work, k is not a real variable. In

fat, the method desribed herein onsists in evaluating the Fourier inversion

integral in (2.8) by onsidering it as a ontour integral along the real axis of

the k-plane and then deforming this path of integration into another like those

in Figures 3 to 5. Clearly, for the omplex values of k along the new paths,

ab 6= 0 most often.

2. We need to onsider only a > 0. In fat, that we an take a ≥ 0 without

loss of generality is obvious, and the results for a = 0 are not neessary for

the following reason: The set S of points of the k-plane orresponding to

a = 0 are those in the real axis segment between −ω/c and ω/c as well as

in the imaginary axis, and Figures 3 to 5 show that any of the new paths of

integration ontains a �nite number of points of S (two points, to be preise).

This means that a �nite number of values of

¯̃G(x, k, ω |x′, y′, t′) given by (2.7)

with a = 0 are integrated along the new paths [in ontrast with the in�nite
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number of values along the real path in (2.8)℄, and sine these values are �nite,

their ontribution to the integral is negligible. As a onlusion, there is no

need to onsider a = 0.

3. Notie that (2.7) is not valid for k = ω/c (that is, for a = b = 0); but a valid

expression for this ase is not neessary, beause the point k = ω/c never

belongs to the new path of integration (.f. Figures 3 to 5).

Let us now proeed ompleting the determination of

¯̃G. In (2.7), we set c2 =
d1 = 0 to avoid in�nite values for x → ±∞. Requiring ontinuity at x = x′

, that

is, G(x′+, k, ω |x′, y′, t′) = G(x′−, k, ω |x′, y′, t′), we an eliminate d2, obtaining

¯̃G(x, k, ω |x′, y′, t′) =

{
c1 e

(a+bi)x (x ≤ x′)

c1 e
2(a+bi)x′

e−(a+bi)x (x ≥ x′) .

By using (2.6), the jump ondition, we �nd c1 = − e−(a+bi)x′

ei(ky′+ωt′)

4π(a+bi) , whose

substitution in the equation above furnishes the desired solution of (2.5):

¯̃G(x, k, ω |x′, y′, t′) = − ei(ky
′+ωt′)

4π(a+ bi)
×
{
e−(a+bi)(x′−x) (x ≤ x′)

e−(a+bi)(x−x′) (x ≥ x′) ,

or

¯̃G(x, k, ω |x′, y′, t′) = −e−
√

k2−ω2/c2 |x′−x|+ i(ky′+ωt′)

4π
√

k2 − ω2/c2
,

with Re
√

k2 − ω2/c2 > 0 (beause a > 0).
We now use this result in the inversion Fourier integral given by (2.8):

G̃(x, y, ω |x′, y′, t′) =
−1

4π
√
2π

∞∫

−∞

dk
√

k2 − ω2/c2
e−|X|

√
k2−ω2/c2 − i(kY−ωt′), (2.9)

where X ≡ x− x′
and Y ≡ y − y′.

Considering, as already mentioned, the integral in (2.9) as a ontour integral

along the real axis of the omplex plane of k = kx + iky, let us hange the variable
k to another omplex variable ζ = φ+ iu as follows

2

:

k = −ω

c
cos ζ = −ω

c
cos(φ+ iu) = −ω

c
cosφ coshu

︸ ︷︷ ︸

kx

+ i
ω

c
sinφ sinhu

︸ ︷︷ ︸

ky

, (2.10)

from whih, as indiated,

kx = −(ω/c) cosφ coshu and ky = (ω/c) sinφ sinhu . (2.11)

2

Instead of (2.10), we ould have performed the hange of variables k = (ω/c) cos(φ + iu), or
even k = (ω/c) sin(φ + iu) with φ ∈ [−π/2, π/2] and u ∈ (−∞,∞), and only a few modi�ations

in the development would be neessary.
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Figure 1: The domain and image of the

map de�ned by (2.10).

These equations with φ ∈ [0, π] and u ∈
(−∞,∞) de�ne a map from the strip of

the ζ-plane shown in Figure 1 to the whole
k-plane. Figure 2 shows that a vertial

straight line φ = onstant (6= 0, π/2 or π)
is mapped to a hyperbola (in the left half

plane if φ = φ1 < π/2 or the right one if

φ = φ2 > π/2) and that a horizontal line

segment u = onstant (6= 0) is mapped to

a half ellipse (in the upper half plane if

u = u1 > 0 or the lower one if u = u2 <
0). In fat, in the k-plane, (2.11) with φ = φ0 (6= 0, π/2 or π) or u = u0 (6= 0) an
be seen respetively as the parametrization of:

• the left (if φ0 < π/2) or right (if φ0 > π/2) branh of the hyperbola

[
kx

−(ω/c) cosφ0

]2

−
[

ky
(ω/c) sinφ0

]2

= 1

• the upper (if u0 > 0) or lower (if u0< 0) half of the ellipse

[
kx

−(ω/c) coshu0

]2

+

[
ky

(ω/c) sinhu0

]2

= 1

In addition, (2.11) with φ = 0 or π desribes the portion of the real axis from −∞
to −(ω/c) or that from (ω/c) to ∞, respetively; with φ = π/2, the imaginary axis;

and with u = 0, the portion of the real axis from −ω/c to ω/c.
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Figure 2: The map in (2.10): hyperbolas and half ellipses as images of vertial

straight lines and horizontal line segments, respetively. (A line in the φu-plane
and its image are both drawn with the same pattern and oriented with the same

kind of arrow.)

We will evaluate the integral in (2.9) for the ontour C = E1 ∪H ∪E2 depited

in Figure 3, but with R → ∞, where:
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Figure 3: The ontour C used to evaluate the integral in (2.9).

• E1 is the elliptial path given by (2.11) with u = u0 = cosh−1(cR/ω) and φ
varying from 0 to a suitable value φ0 yet to be determined

• H is the hyperboli path given by (2.11) with φ = φ0 and u varying from u0

to −u0

• E2 is the elliptial path given by (2.11) with u = −u0 and φ varying from φ0

to π

In (2.9) we are faed with the problem of hoosing the orret branh of the

square root z(k) ≡
√

k2 − ω2/c2 = ±|z(k)| exp[i arg z(k)]. Let us proeed onsider-

ing both branhes simultaneously (we will reah a point at whih onsisteny will

impose the orret one):

√

k2 − ω2/c2 = ±i (ω/c) sin ζ = ±i (ω/c) sin(φ+ iu) .

Therefore, using this and (2.10), we have that

dk
√

k2 − ω2/c2
=

(ω/c) sin ζ dζ

±i (ω/c) sin ζ
= ∓i dζ = ∓i (dφ+ idu) = ∓(−du+ idφ) (2.12)

and also that the exponent appearing in (2.9) an be written as follows:

−|X |
√

k2 − ω2/c2 − i (kY − ωt′) =

−|X |
[

± i
ω

c
sin(φ + iu)

]

− i
[

− ω

c
cos(φ+ iu)Y − ωt′

]

=

∓ i
ω

c
|X | (sinφ coshu+ i cosφ sinhu) − i

[

− ω

c
(cosφ coshu− i sinφ sinhu)Y −ωt′

]

=
ω

c

(
± |X | cosφ+ Y sinφ

)
sinhu+ i

ω

c

[
(∓|X | sinφ+ Y cosφ) coshu+ ct′

]
,

or

f(φ, u) ≡ −|X |
√

k2 − ω2/c2 − i (kY − ωt′) =
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ω

c
g(φ) sinh u+ i

ω

c

[
g′(φ) coshu+ ct′

]
, (2.13)

where

g(φ) ≡ ±|X | cosφ+ Y sinφ . (2.14)

The integral in (2.9) for the ontour C an be split in three integrals evaluated

on the three paths E1, H and E2 whih ompose C. Thus, using (2.12) and (2.13),

we an write (2.9) as follows:

G̃(~r, ω |~r ′, t′) =
−1

4π
√
2π

[∫

E1

+

∫

H

+

∫

E2

]

ef(φ,u) dk/
√

k2− ω2/c2
︸ ︷︷ ︸

∓(−du+i dφ)

=
±1

4π
√
2π

[

i

∫ φ0

0

dφ ef(φ,u0) −
∫ −u0

u0

du ef(φ0,u) + i

∫ π

φ0

dφ ef(φ,−u0)

]

. (2.15)

Now is the moment to determine φ0. This parameter an be found in suh

a way that the two integrals with respet to φ in (2.15) (those evaluated on the

elliptial part of C) go to zero as R = (ω/c) coshu0 → ∞ (that is u0 → ∞), thereby

onsiderably simplifying the alulations. Indeed, using (2.13), we see that these two

integrals will tend to zero as u0 → ∞ if Ref(φ,±u0) = ±(ω/c) g(φ) sinhu0 → −∞,

what will our if g(φ) < 0 in the �rst integral with respet to φ and g(φ) > 0 in

the seond one. This imposes the requirements

(a) g(φ0) = 0 and (b) g′(φ0) > 0 . (2.16)

Looking at (2.15) and (2.13), we see that we atually do not need φ0, but g(φ0)
and g′(φ0). In order to alulate g′(φ0), we need to develop (2.16a). Considering

(2.14), we have

g(φ0) = ±|X | cosφ0 + Y sinφ0 = 0 ⇒ X2 cos2 φ0 = Y 2 sin2 φ0

⇒ X2(1− sin2 φ0) = Y 2 sin2 φ0 ⇒ X2 = (X2 + Y 2) sin2 φ0 ,

from whih, solving for sinφ0 [the positive value is taken, beause φ0 ∈ (0, π)℄ and
then alulating cosφ0, we obtain

sinφ0 = |X |/ρ and cosφ0 = ∓Y sinφ0/|X | = ∓Y/ρ ,

where ρ =
√
X2 + Y 2 =

√

(x− x′)2 + (y − y′)2 = |~r − ~r ′| .

Figure 4: The ontour C for cosφ0 < 0.

0
 

 0cosw
c   

R 
x

k

yk

0 1E

2E

H
 

/c!
 

–R 

(Notie that cosφ0 may be negative, that

is, φ0 > π/2 ; in this ase, the ontour C
is like that in Figure 4.) Therefore, using

these results, we get

g′(φ0) = ∓|X | sinφ0 + Y cosφ0

= ∓X2/ρ∓ Y 2/ρ

= ∓(X2+ Y 2)/ρ = ∓ρ . (2.17)
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In this, in view of (2.16b), we hoose the plus sign. Sine this sign is the lower

one in the �∓� appearing in (2.17), in eah �±� and �∓� related to the two branhes

of

√

k2 − ω2/c2, the lower sign is also the orret one. The substitution of (2.16a)

and g′(φ0) = ρ in (2.13) then yields

f(φ0, u) =
ω

c
g(φ0)
︸ ︷︷ ︸

0

sinhu+ i
ω

c

[

g′(φ0)
︸ ︷︷ ︸

ρ

coshu+ ct′
]

= iω
[ρ

c
coshu+ t′

]

. (2.18)

With this and the fat that the �rst and third integrals tend to zero, we an

rewrite (2.15) as

G̃(~r, ω |~r ′, t′) =
−1

4π
√
2π

∫ ∞

−∞

du eiω[
ρ
c
coshu+t′] . (2.19)

Using (2.4) to alulate F
−1
t of this result, we obtain

G(~r, t |~r ′, t′) =
−1

8π2

∫ ∞

−∞

du

∫ ∞

0

dω
{

eiω[
ρ
c
coshu−(t−t′)] + e−iω[ρc coshu−(t−t′)]

}

=
−1

4π

∫ ∞

−∞

du

{
1

π

∫ ∞

0

dω cosω
[ρ

c
coshu− (t− t′)

]}

.

De�ning T ≡ t − t′, reognizing {f. [8℄, equation (6.28)} that the last pair of

braes enloses an integral representation of the delta funtion

δ [ (ρ/c) coshu− T ] = δ [ (ρ/c) (coshu− cT/ρ) ] = (c/ρ) δ (coshu− cT/ρ) ,

and hanging to the variable v = coshu, we an proeed the alulation as follows:

G(~r, t |~r ′, t′) =
−1

4π
2

∞∫

0

du
c

ρ
δ
(

coshu− cT

ρ

)

=
−c

2πρ

∞∫

1

dv√
v2 − 1

δ
(

v − cT

ρ

)

=
−c

2πρ
√

(cT/ρ)2 − 1
×
{
0 if cT/ρ < 1 i.e. −ρ/c+ T < 0
1 if cT/ρ > 1 i.e. −ρ/c+ T > 0

︸ ︷︷ ︸

U (−ρ/c+T )

,

where U(τ) is the unit step funtion (equal to 0 for τ < 0 and to 1 for τ > 0). We

thus obtain the �nal result

G(~r, t |~r ′, t′) = G(ρ, T ) =
−1

2π

U(−ρ/c+ T )
√

−(ρ/c)2 + T 2
[ ρ ≡ |~r − ~r ′| , T ≡ t− t′ ] ,

(2.20)

whih, exept for the multipliative onstant (due to little di�erenes in the form

of the wave equation onsidered), is the same expression obtained in referenes [1,

equation (11.2.21)℄ and [9, p. 842, equation (7.3.15)℄, by using another method (by

integrating the orresponding three-dimensional Green's funtion).

TEMA Tend. Mat. Apl. Comput., 14, No. 1 (2013), 119-130.

doi: 10.5540/tema.2013.014.01.0119



New Methodologies for the Calulation of Green's Funtions 127

3. Advaned Green's Funtion for the Wave Equa-

tion

In the previous setion, it looks like (2.2) is never used. Nevertheless, the Green's

funtion given by (2.20) indeed satis�es that ausality ondition:

t < t′ ⇒ −ρ

c
+ T = −ρ

c
+ t− t′

︸ ︷︷ ︸

<0

< 0 ⇒ U(−ρ/c+ T
︸ ︷︷ ︸

<0

) = 0 ⇒ G(~r, t |~r ′, t′) = 0 .

We then may ask: To obtain the advaned Green's funtion, satisfying

G(~r, t |~r ′, t′) = 0 if t > t′ , (3.1)

what should be modi�ed in the alulational method desribed above? The answer

is simple but subtle: it is the ontour used to perform the inversion integral (2.9)

that needs modi�ation. Inidentally, a ontour formed with the hyperboli and

elliptial ars that arise in the hange of variable given by (2.10) is either ompatible

with (2.2) or (3.1). The ontour in Figure 3 is ompatible with (2.2). If we want

(3.1) to be satis�ed, the ontour C to be used is that in Figure 5. Let us on�rm

this.
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Figure 5: The ontour along whih the integral in (2.9) leads to the advaned

Green's funtion.

The integral in (2.9) for the ontour in Figure 5 an be written in the form of

(2.15) with a few obvious hanges:

G̃(~r, ω |~r ′, t′) =
±1

4π
√
2π

[

i

φ0∫

0

dφ ef(φ,−u0) −
u0∫

−u0

du ef(φ0,u) + i

π∫

φ0

dφ ef(φ,u0)

]

, (3.2)

where f(φ, u) is still given by (2.13) and (2.14), remembering that the �±� indiates
the use of both branhes of

√

k2 − ω2/c2 . As R → ∞ (or u0 → ∞), Ref(φ,∓u0) =
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∓(ω/c) g(φ) sinhu0 → −∞ if g(φ) > 0 in the �rst integral above and g(φ) < 0 in

the third one, meaning that g(φ0) = 0, as in the previous ase, but now g′(φ0) < 0.
In this ase, it is the upper sign in the �∓� in (2.17) the orret one. Let us then

proeed from (3.2) with: (a) the upper sign in �±�; (b) u0 → ∞, thereby making

the �rst and third integrals go to zero; and () f(φ0) = iω[(−ρ/c) coshu+ t′] (from
(2.18) with −ρ in plae of ρ). By doing this, we obtain (2.19), but with −ρ in plae

of ρ, whih, developed as before, leads to a result similar to (2.20):

G(~r, t |~r ′, t′) =
−c

2πρ
√

(cT/ρ)2 − 1
×
{
0 if cT/(−ρ) < 1 i.e. −ρ/c− T < 0
1 if cT/(−ρ) > 1 i.e. −ρ/c− T > 0

︸ ︷︷ ︸

U (−ρ/c−T )

⇒ G(~r, t |~r ′, t′) = G(ρ, T ) =
−1

2π

U(−ρ/c− T )
√

−(ρ/c)2 + T 2
.

This is the advaned Green's funtion, satisfying (3.1):

t > t′ ⇒ −ρ

c
−T = −ρ

c
− (t− t′)
︸ ︷︷ ︸

>0

< 0 ⇒ U(−ρ/c− T
︸ ︷︷ ︸

<0

) = 0 ⇒ G(~r, t |~r ′, t′) = 0 .

4. Green's Funtion for the Helmholtz Equation

Green's funtion for the Helmholtz equation an be easily obtained from the pre-

vious results. In fat, with the de�nitions of the new onstants K ≡ ω/c and

α ≡ eiωt′/
√
2π (in the present ontext, the parameters t′ and ω are irrelevant) as

well as Γ (~r |~r ′ ) ≡ G̃(~r, ω |~r ′, t′), (2.3) takes the ommon form of the equation

whose solution is the Green's funtion Γ (~r |~r ′ ) for the Helmholtz equation:

∇2
Γ (~r |~r ′ ) +K2

Γ = α δ(~r − ~r ′) . (4.1)

Moreover, we have seen that (2.19), as it stands or with −ρ in plae of ρ, provides
an integral representation for G̃ = Γ . But these two forms, exept for multipliative

onstants, an be reognized as known integral representations for the �rst or the

seond Hankel funtion of order zero (f. equations (10) and (11) in [11℄, �6.21).

We thus see that (4.1) has the two well-known elementary solutions

Γ (~r |~r ′ ) =
−α

4π

∫ ∞

−∞

du e±iKρ coshu =

{

(−αi/4)H
(1)
0 (Kρ) for the �+� sign

(αi/4)H
(2)
0 (Kρ) for the �−� sign .

The deision to use either one, or a linear ombination of the two, depends on

whether the physial problem at hand involves only outgoing or inoming waves (f.

[7℄, Se. 9.12, p. 470), or a superposition of these two kinds of waves.

5. Conlusion

The main part of the alulations developed above onsists in solving Helmholtz

equation (2.3) to obtain its solution in the form of the integral representation given
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by (2.19). This is atually the derivation of Green's funtion for Helmholtz equation

(4.1), as explained in setion 3 (where that integral representation is reognized as

the �rst Hankel funtion of order zero). In the literature, there exists two alternative

methods for the alulation of this Green's funtion by diretly solving the two-

dimensional Helmholtz equation as well as two indiret methods, in whih that

equation is not solved. With the intention of highlighting how di�erent is the

method desribed here, we present below a summary of all methods.

In this work, Green's funtion for the two-dimensional Helmholtz equation is ob-

tained by diretly solving this equation. First, a Fourier transform is used to redue

the two-dimensional problem into a one dimension problem whih is relatively easy

to solve. Next, by onsidering the orresponding inverse Fourier transform integral

as a ontour integral in the omplex plane and performing a suitable hange of

the omplex variable of integration, that integral an be onsiderably simpli�ed [4℄.

It then beomes possible to identify this simpler integral with the forementioned

Hankel funtion as well as to perform the alulations beyond equation (2.19).

The �rst already existing diret method is given in referene [10℄, where the

alulation begins with the appliation of the two-dimensional Fourier transform.

Then, in order to evaluate the inverse Fourier double integral, ontour integration in

the omplex plane is used to perform one of the integrals, being neessary to arry

out a detailed analysis to determine the orret presription for irumventing the

real poles of the integrand. Thereafter, the resulting integral, by means of a few

manipulations, is onverted into a known integral representation of that Hankel

funtion, thus ending the alulation.

The other diret method an be found in referenes [5℄, equations (5.1.14) to

(5.1.16), or [6℄, setion 1.2.2, where symmetry onsiderations are used to turn the

problem one-dimensional, depending only on ρ = |~r − ~r ′|, in whih a nonhomoge-

neous Bessel equation of order zero, exhibiting a delta funtion δ(ρ) on the right-

hand side, has to be solved. The general solution of this di�erential equation is well

known for ρ 6= 0. Therefore, it only remains to determine the arbitrary onstants;

this is aomplished by imposing the orret onditions for ρ → 0 and ρ → ∞ (to

satisfy this ondition at in�nity � the radiation ondition � it is easier to work with

the general solution formed with the Hankel funtions.)

One way of obtaining Green's funtion for the two-dimensional Helmholtz equa-

tion without solving diretly this di�erential equation is by employing the method

of desent (see referene [3℄, Ch. VI, �12, 3), by means of whih the solution of the

two-dimensional problem is obtained by integrating the solution of the orrespond-

ing easier three-dimensional problem with respet to the variable whih spans the

dimension being eliminated (the Cartesian variable z, in the ase).

Another indiret way (see referene [1℄, setion 13.2.2) is as follows: one �rst

relates Green's funtion for the wave equation, G(~r, t |~r ′, t′), to Green's funtion

for the Helmholtz equation, Γ (~r |~r ′), and then, having determined the former

(e.g., by desenting from the easier three-dimensional problem), he uses this re-

lationship to alulate the latter. The �rst step is aomplished by noting that

the stationary wave desribed by Helmholtz equation is a partiular ase of the

generi wave motion desribed by the wave equation, from whih it follows that

Γ (~r |~r ′) =
∫ t

−∞ G(~r, t |~r ′, t′) eiω0(t−t′) dt′.
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The importane of a new method for a problem already solved resides in the

method itself, for it is likely to have other appliations. This is true even if suh

method beomes more involved in that partiular problem, beause this may not

happen in others. In fat, greater generality often requires more elaboration.

Resumo. Este trabalho desreve a apliação de novas metodologias para o álulo

das transformadas de Fourier inversas que forneem as funções de Green assoiadas

às equações da onda e de Helmholtz em todo o domínio bidimensional.

Palavras-have. Equação da onda, bidimensional, função de Green.
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