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Abstract. A dynamical characterization of the stability boundary for a fairly large
class of nonlinear autonomous dynamical systems is developed in this paper. This
characterization generalizes the existing results by allowing the existence of saddle-
node equilibrium points on the stability boundary. The stability boundary of an
asymptotically stable equilibrium point is shown to consist of the stable manifolds
of the hyperbolic equilibrium points on the stability boundary and the stable, stable
center and center manifolds of the saddle-node equilibrium points on the stability
boundary.

Keywords. Stability Region, Stability Boundary, Saddle-Node Equilibrium Point.

1. Introduction

Asymptotically stable equilibrium points of many practical nonlinear dynamical
systems are not globally stable. As a consequence, the determination of stability
regions (region of attraction or basin of attraction) of asymptotically stable equi-
librium points is a fundamental problem in nonlinear system theory [10] with great
importance in several applications [19, 17, 4]. The exact stability region is of diffi-
cult determination and, over the last thirty years, a great number of methods were
proposed for estimating the stability region of attractors of nonlinear dynamical
systems [16].

Some recent methods, such as those developed in [8] and [4], explore a topological
characterization of the stability boundary (the boundary of the stability region)
to obtain good estimates of the stability region. Therefore, developing characte-
rizations of stability boundaries of nonlinear dynamical systems is of fundamental
importance for developing efficient tools for stability region estimation.
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Under some reasonable assumptions, the stability boundary of an asymptotically
stable equilibrium point was characterized in terms of the stable manifolds of a set of
unstable equilibria (and/or closed orbits) lying on this boundary [6]. These existing
characterizations of stability boundaries were proved under the key assumption
that all the equilibrium points on the stability boundary are hyperbolic. A first
generalization of this characterization appeared in [2] by considering the existence
of a particular type of non-hyperbolic equilibrium point, the so called type-zero
saddle-node equilibrium point, on the stability boundary. In this paper, a further
generalization of this characterization of the stability boundary is developed by
allowing the presence of any type of saddle-node equilibrium point on the stability
boundary. The characterization of the stability boundary in the presence of saddle-
node equilibrium points is of fundamental importance for studying stability region
bifurcations [3].

In this paper, a complete characterization of the stability boundary of nonlinear
dynamical systems possessing saddle-node equilibrium points on it is presented. It
is shown that the stability boundary consists of the stable manifolds of the hyper-
bolic equilibrium points on the stability boundary and the stable, stable center and
center manifolds of the saddle-node equilibrium points on the stability boundary.
Necessary and sufficient conditions for a saddle-node equilibrium point lying on the
stability boundary are also developed.

2. Preliminaries

In this section, some classical concepts of the theory of dynamical systems are
reviewed. In particular, an overview of the main features of the dynamic behavior
of a system in the neighborhood of a specific type of non-hyperbolic equilibrium
point, the saddle-node equilibrium point, is presented. More details on the content
explored in this section can be found in [11, 21, 18].

Consider the nonlinear autonomous dynamical system

ẋ = f(x) (2.1)

where x ∈ R
n. One assumes that f : Rn → R

n is a vector field of class Cr with
r ≥ 2. The solution of (2.1) starting at x at time t = 0 is denoted by ϕ(t, x). The
map t → ϕ(t, x) defines in R

n a curve passing through x at t = 0 that is called
trajectory or orbit of (2.1) through x. If M is a set of initial conditions, then ϕ(t,M)
denotes the set {ϕ(t, x), x ∈ M} =

⋃
x∈M ϕ(t, x). A set S ∈ R

n is said to be an
invariant set of (2.1) if every trajectory of (2.1) starting in S remains in S for all t.

2.1. Hyperbolic equilibrium points

A point x∗ ∈ R
n is an equilibrium point of (2.1) if f(x∗) = 0. An equilibrium

point x∗ is said to be hyperbolic if none of the eigenvalues of the Jacobian matrix
Df(x∗) of f(x), calculated at the equilibrium point x∗, has real part equal to zero.
Moreover, a hyperbolic equilibrium point x∗ is of type-k if the Jacobian matrix
Df(x∗) possesses k eigenvalues with positive real part and n − k eigenvalues with
negative real part.
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Let x∗ be a hyperbolic equilibrium point of the nonlinear dynamical system
(2.1). Then there exists a neighborhood U of x∗ and local stable and unstable

manifolds [13], W s
loc(x

∗) = {x ∈ U : ϕ(t, x) → x∗ as t → ∞} and Wu
loc(x

∗) = {x ∈
U : ϕ(t, x) → x∗ as t → −∞} with the following properties: (i) they have the
same dimensions as those of the eigenspaces Es and Eu of the linearized system
ż = Df(x∗)z, therefore the sum of the dimension of W s

loc(x
∗) and of Wu

loc(x
∗) equals

the dimension of the state space; (ii) they are tangent to Es and Eu at x∗; and (iii)
they are as smooth as function f .

The stable manifold W s(x∗) and the unstable manifold Wu(x∗), which are in-
variant sets, are obtained by letting the points in W s

loc(x
∗) to flow backwards in

time and the points in Wu
loc(x

∗) to flow forwards in time [22]:

W s(x∗) =
⋃

t≤0

ϕ(t,W s
loc(x

∗)) Wu(x∗) =
⋃

t≥0

ϕ(t,Wu
loc(x

∗)).

2.2. Saddle-Node equilibrium points

In this section, a specific type of non-hyperbolic equilibrium point, namely saddle-
node equilibrium point, is studied. In particular, the dynamical behavior in a
neighborhood of the equilibrium is investigated, including the asymptotic behavior
of solutions in the invariant local manifolds.

Definition 2.1. [21](Saddle-Node Equilibrium Point): A non-hyperbolic equi-
librium point p ∈ R

n of (2.1) is called a saddle-node equilibrium point if the following
conditions are satisfied:
(i) Dxf(p) has a unique simple null eigenvalue and none of the other eigenvalues
have real part equal to zero.
(ii) w(D2

xf(p)(v, v)) 6= 0,
with v as the right eigenvector and w the left eigenvector associated with the null
eigenvalue.

Saddle-node equilibrium points can be classified in types according to the num-
ber of eigenvalues of Dxf(p) with positive real part.

Definition 2.2. (Saddle-Node Equilibrium Type): A saddle-node equilibrium
point p of (2.1), is called a type-k saddle-node equilibrium point if Dxf(p) has k
eigenvalues with positive real part and n− k − 1 with negative real part.

If p is a saddle-node equilibrium point of (2.1), then there exist invariant local
manifolds W s

loc(p), W
cs
loc(p), W

c
loc(p), W

u
loc(p) and W cu

loc(p) of class Cr, tangent to Es,
Ec⊕Es, Ec, Eu and Ec⊕Eu at p, respectively [13]. These manifolds are respectively
called stable, stable center, center, unstable and unstable center manifolds. The
stable and unstable manifolds are unique, but the stable center, center and unstable
center manifolds may not be.

If p is a saddle-node equilibrium point, then the following properties hold [21]:

(1) p is a type-0 saddle-node equilibrium point of (2.1):
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(i) The (n − 1)-dimensional local stable manifold W s
loc(p) of p exists, is

unique, and if q ∈ W s
loc(p) then ϕ(t, q) −→ p as t −→ +∞.

(ii) The unidimensional local center manifold W c
loc(p) of p can be splitted in

two invariant submanifolds:

W c
loc(p) = W c−

loc (p) ∪W c+

loc(p)

where q ∈ W c−

loc (p) implies ϕ(t, q) −→ p as t −→ +∞ and q ∈ W c+

loc(p)

implies ϕ(t, q) −→ p as t −→ −∞. Moreover, W c+

loc(p) is unique while

W c−

loc (p) is not.

(2) p is a type-k saddle-node equilibrium point of (2.1) with 1 ≤ k ≤ n− 2:

(i) The k-dimensional local unstable manifold Wu
loc(p) of p exists, is unique,

and if q ∈ Wu
loc(p) then ϕ(t, q) −→ p as t −→ −∞.

(ii) The (n− k − 1)-dimensional local stable manifold W s
loc(p) of p exists, is

unique, and if q ∈ W s
loc(p) then ϕ(t, q) −→ p as t −→ +∞.

(iii) The (n− k)-dimensional local stable center manifold W cs
loc(p) of p can be

splitted in two invariant submanifolds:

W cs
loc(p) = W cs−

loc (p) ∪W cs+

loc (p)

where q ∈ W cs−

loc (p) implies ϕ(t, q) −→ p as t −→ +∞. The local stable

center manifold W s
loc(p) is contained in W cs−

loc (p), moreover, W cs−

loc (p) is

unique while W cs+

loc (p) is not.

(iv) The (k + 1)-dimensional local unstable center manifold W cu
loc(p) of p can

be splitted in two invariant submanifolds:

W cu
loc(p) = W cu−

loc (p) ∪W cu+

loc (p)

where q ∈ W cu+

loc (p) implies ϕ(t, q) −→ p as t −→ −∞. The local unstable

center manifold Wu
loc(p) is contained in W cu+

loc (p), moreover, W cu+

loc (p) is

unique while W cu−

loc (p) is not.

(3) p is a type-(n− 1) saddle-node equilibrium point of (2.1):

(i) The (n − 1)-dimensional local unstable manifold Wu
loc(p) of p exists, is

unique, and if q ∈ Wu
loc(p) then ϕ(t, q) −→ p as t −→ −∞.

(ii) The unidimensional local center manifold W c
loc(p) of p can be splitted in

two invariant submanifolds:

W c
loc(p) = W c−

loc (p) ∪W c+

loc(p)

where q ∈ W c−

loc (p) implies ϕ(t, q) −→ p as t −→ +∞ and q ∈ W c+

loc(p)

implies ϕ(t, q) −→ p as t −→ −∞. Moreover, W c−

loc (p) is unique while

W c+

loc(p) is not.
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Figure 1: Manifolds W cs
−

loc (p) and W cu
+

loc (p) for a type-1 saddle-node equilibrium point p

of system (2.1) in R
3.

Although the stable and unstable manifolds of a hyperbolic equilibrium point
are defined by extending the local manifolds through the flow, this technique cannot
be applied to general non-hyperbolic equilibrium points. However, in the particular
case of a saddle-node equilibrium point p, one still can define the global manifolds
W s(p), Wu(p), W c+(p), W c−(p), W cs−(p) and W cu+

(p) extending the local ma-

nifolds W s
loc(p), W

u
loc(p), W

c+

loc(p), W
c−

loc (p), W
cs−

loc (p) and W cu+

loc (p) through the flow
as follows:

W s(p) :=
⋃

t≤0

ϕ(t,W s
loc(p)) Wu(p) :=

⋃

t≥0

ϕ(t,Wu
loc(p))

W cs−(p) :=
⋃

t≤0

ϕ(t,W cs−

loc (p)) W cu+

(p) :=
⋃

t≥0

ϕ(t,W cu+

loc (p))

W c−(p) :=
⋃

t≤0

ϕ(t,W c−

loc (p) and W c+(p) :=
⋃

t≥0

ϕ(t,W c+

loc(p)).

This extension is justified by the aforementioned invariance and the asymp-
totic behavior of the local manifolds W s

loc(p), W
u
loc(p), W

c+

loc(p), W
c−

loc (p), W
cs−

loc (p)

and W cu+

loc (p), see items (1), (2) and (3) above. Figure 1 illustrates the manifolds

W cs−

loc (p) and W cu+

loc (p) for a type-1 saddle-node equilibrium point p.

2.3. Stability Region

Suppose xs is an asymptotically stable equilibrium point of (2.1). The stability
region (or region of attraction) of xs is the set

A(xs) = {x ∈ R
n : ϕ(t, x) → xs as t → ∞},

of all initial conditions x ∈ R
n whose trajectories converge to xs when t tends to

infinity.
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The stability region A(xs) is an open and invariant set. Its closure A(xs) is
invariant and the stability boundary ∂A(xs), the topological boundary of A(xs), is
a closed and invariant set.

Figure 2: Stability region and stability boundary of an asymptotically stable equilibrium

point xs.

3. Hyperbolic Equilibrium Points on the Stability

Boundary

In this section, an overview of the existing body of theory about the stability bound-
ary characterization of nonlinear dynamical systems is presented. The unstable
equilibrium points that lie on the stability boundary ∂A(xs) play an essential role
in the stability boundary characterization.

Let xs be a hyperbolic asymptotically stable equilibrium point of (2.1) and
consider the following assumptions:
(A1) All the equilibrium points on ∂A(xs) are hyperbolic.
(A2) Every trajectory on ∂A(xs) approaches an equilibrium point as t → +∞.

Assumption (A1) is a generic property of dynamical systems in the form of (2.1).
In other words, it is satisfied for almost all dynamical systems in the form of (2.1)
and, in practice, does not need to be verified. On the contrary, assumption (A2)
is not a generic property of dynamical systems and needs to be checked. In spite
of that, many nonlinear dynamical systems satisfy this property. In particular, the
existence of an energy function is a sufficient condition to guarantee the satisfaction
of (A2) [6].

Under assumptions(A1)and(A2),the next theorem provides a complete
characterization of the stability boundary ∂A(xs). It asserts that the stability
boundary ∂A(xs) is the union of the stable manifolds of the unstable equilibrium
points on ∂A(xs).

Theorem 3.1. (Stability boundary characterization)[6] Let xs be an asymp-
totically stable equilibrium point of (2.1) and A(xs) be its stability region. If as-
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sumptions (A1) and (A2) are satisfied, then:

∂A(xs) ⊆
⋃

i

W s(xi)

where xi, i = 1, 2, ... are the hyperbolic equilibrium points on the stability boundary
∂A(xs). If, in addition, Wu(xi) ∩ A(xs) 6= ∅, i = 1, 2, ..., then

∂A(xs) =
⋃

i

W s(xi).

Theorem 3.1 provides a complete stability boundary characterization of system
(2.1) under assumptions (A1) and (A2). Sufficient conditions to guarantee that
Wu(xi) ∩ A(xs) 6= ∅ when a hyperbolic equilibrium point xi ∈ ∂A(xs) are also
provided in [6].

4. Saddle-Node Equilibrium Points on the Stability

Boundary

In the presence of non hyperbolic equilibrium points on the stability boundary,
Theorem 3.1 is not valid. In this section, a generalization of the results of Theorem
3.1 about stability boundary characterization is developed. We study the stability
boundary characterization when assumption (A1) is violated. In particular, a com-
plete characterization of the stability boundary is developed when a particular type
of non-hyperbolic equilibrium point, the so called saddle-node equilibrium point,
lies on the the stability boundary ∂A(xs).

Next theorem offers necessary and sufficient conditions to guarantee that a
saddle-node equilibrium point lies on the stability boundary in terms of the pro-
perties of its stable, unstable and center manifolds.

Theorem 4.1. (Saddle-Node Equilibrium Point on the Stability Boun-

dary): Let p be a saddle-node equilibrium point of (2.1). Suppose also, the existence
of an asymptotically stable equilibrium point xs and let A(xs) be its stability region.
Then the following holds:

(i) If p is a type-0 saddle-node equilibrium point, then:

p ∈ ∂A(xs) ⇔ (W c+(p)− {p}) ∩ A(xs) 6= ∅

p ∈ ∂A(xs) ⇔ (W s(p)− {p}) ∩ ∂A(xs) 6= ∅.

(ii) If p is a type-k saddle-node equilibrium point, 1 ≤ k ≤ n− 2, then:

p ∈ ∂A(xs) ⇔ (W cu+

(p)− {p}) ∩ A(xs) 6= ∅

p ∈ ∂A(xs) ⇔ (W s(p)− {p}) ∩ ∂A(xs) 6= ∅.
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(iii) If p is a type-(n− 1) saddle-node equilibrium point, then:

p ∈ ∂A(xs) ⇔ (W cu+

(p)− {p}) ∩ A(xs) 6= ∅.

Proof. (i) The proof of item (i) can be found in [2].
(ii) (⇐=) Suppose first that (W cu+(p) − {p}) ∩ A(xs) 6= ∅. Then there exists

x ∈ W cu+

(p) ∩ A(xs). Note that ϕ(t, x) −→ p as t −→ −∞. On the other
hand, set A(xs) is invariant, thus ϕ(t, x) ∈ A(xs) for all t ≤ 0. As a consequence,
p ∈ A(xs). Since p /∈ A(xs), we have that p ∈ (Rn − A(xs)). Therefore, p ∈
∂A(xs). Now if (W s(p) − {p}) ∩ ∂A(xs) 6= ∅ then there exists at least a point
x ∈ (W s(p) − {p}) ∩ ∂A(xs). Moreover, ϕ(t, x) → p as t → ∞. Since ∂A(xs) is
closed and invariant, then p ∈ ∂A(xs).
(ii) (=⇒) Suppose that p ∈ ∂A(xs). Let Dcu be a neighborhood of p in W cu(p),
whose boundary ∂Dcu is transversal to the vector field f on W cu+, and define
Dcu+

:= Dcu ∩W cu+

(p). Consider Lcu+

ǫ = {x ∈ R
n : d(x, ∂Dcu+

) < ǫ} for some
ǫ > 0. As a consequence of λ-lemma for non-hyperbolic equilibrium points [18], we

can take a neighborhood U of p such that ∪t≤0ϕ(t, L
cu+

ǫ ) ⊃ (U−{W cs−(p)}). Since

p ∈ ∂A(xs), we have that U∩A(xs) 6= ∅. On the other hand, as W cs−(p)∩A(xs) = ∅,

we can affirm that (U−{W cs−(p)})∩A(xs) 6= ∅. Thus, there exists a point q∗ ∈ Lcu+

ǫ

and a time t∗ such that ϕ(t∗, q∗) ∈ A(xs). Since A(xs) is invariant, we have that
q∗ ∈ A(xs). Since ǫ can be chosen arbitrarily small, we can find a sequence of points

{q∗i } with q∗i ∈ A(xs) for all i = 1, 2, ... such that d(q∗i , ∂D
cu+

) → 0 as i −→ +∞.
By construction, this sequence is bounded, so has a convergent subsequence, that
is, q∗ij → q as ij → +∞. Thus, d(q∗ij , ∂D

cu+

) → d(q, ∂Dcu+

) as ij −→ +∞ and

consequently q ∈ ∂Dcu+ ⊂ (W cu+

(p)−{p}). Therefore (W cu+

(p)−{p})∩A(xs) 6= ∅.
The proof that p ∈ ∂A(xs) ⇔ (W s(p)−{p})∩∂A(xs) 6= ∅ and of item (iii) is similar
to the above proof and will be omitted.

Let xs be an asymptotically stable equilibrium point of (2.1) and consider the
following assumption:

(A1
′

) All the equilibrium points on ∂A(xs) are either hyperbolic or saddle-node
equilibrium points.

Under assumptions (A1
′

) and (A2), next theorem offers a complete characteri-
zation of the stability boundary of nonlinear autonomous dynamical systems in the
presence of saddle-node equilibrium points on the stability boundary ∂A(xs).

Theorem 4.2. (Stability Boundary Characterization): Let xs be an asymp-
totically stable equilibrium point of (2.1) and A(xs) be its stability region. If
assumptions (A1

′

) and (A2) are satisfied, then

∂A(xs) ⊆
⋃

i

W s(xi)
⋃

j

W s(pj)
⋃

l

W cs−(zl)
⋃

m

W c−(qm)

where xi are the hyperbolic equilibrium points, pj the type-0 saddle-node equilibrium
points, zl the type-k saddle-node equilibrium points, with 1 ≤ k ≤ n − 2 and qm
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the type-(n− 1) saddle-node equilibrium points on ∂A(xs), i, j, l,m = 1, 2, .... If, in

addition, W c+(pj) ∩ A(xs) 6= ∅, for all j = 1, 2, ... and the unstable manifolds of
all other equilibrium points on the stability boundary ∂A(xs) intersect the stability
region A(xs), then:

∂A(xs) =
⋃

i

W s(xi)
⋃

j

W s(pj)
⋃

l

W cs−(zl)
⋃

m

W c−(qm).

Proof. If q ∈ ∂A(xs), from assumptiom (A2), we can affirm that ϕ(t, q) −→ q∗

for some equilibrium point q∗ ∈ ∂A(xs). From assumptiom (A1
′

), we can af-
firm that q∗ is either a hyperbolic equilibrium point or a saddle-node equilibrium
point, that is, q∗ = xi or q∗ = pj or q∗ = zl or q∗ = qm for some i, j, l,m.

Since, the intersection W c−(pj) ∩ ∂A(xs) is empty [2], we can affirm that q ∈⋃
iW

s(xi)
⋃

j W
s(pj)

⋃
l W

cs−(zl)
⋃

m W c−(qm). Therefore, ∂A(xs) ⊆
⋃

iW
s(xi)⋃

j W
s(pj)

⋃
l W

cs−(zl)
⋃

m W c−(qm). In order to prove the other inclusion, we ex-
plore the facts that Wu(xi)∩A(xs) 6= ∅ for all i = 1, 2, . . ., Wu(zl)∩A(xs) 6= ∅ for all
l = 1, 2, . . ., Wu(qm)∩A(xs) 6= ∅ for all m = 1, 2, . . . and W c+(pj)∩A(xs) 6= ∅ for all
j = 1, 2, . . .. If zl is a type k saddle-node equilibrium point, with 1 ≤ k ≤ n− 2, on
∂A(xs), then, by assumption, Wu(zl)∩A(xs) 6= ∅, then there is w ∈ Wu(zl)∩A(xs).
Let B(w, ǫ) be an open ball with an arbitrarily small radius ǫ centered at w. Ra-
dius ǫ can be chosen arbitrarily small such that B(w, ǫ) ⊂ A(xs). Let q1 be an

arbitrary point of W cs−(zl) and consider a disk D of dimension k that is transver-

sal to W cs−(zl) at q1. As a consequence of λ-lemma for non-hyperbolic equilib-
rium points [18], there exists an element z ∈ D and a time t∗ > 0 such that
ϕ(t∗, z) ∈ B(w, ǫ). Since A(xs) is invariant, we have that z ∈ A(xs). Since ǫ and the
disk D can be chosen arbitrarily small, then there exist points of A(xs) arbitrarily

close to q1. Therefore q1 ∈ A(xs). Since W cs−(zl) cannot contain points on A(xs),

q1 ∈ ∂A(xs). Exploring the fact that q1 was arbitrarily taken in W cs−(zl), we can

affirm that W cs−(zl) ⊂ ∂A(xs). Similarly, it can be shown that W s(xi) ⊂ ∂A(xs),

W s(pj) ⊂ ∂A(xs) and W c−(qm) ⊂ ∂A(xs), consequently the theorem is proven.

Theorem 4.2 is more general than Theorem 3.1, since assumption (A1), used in
the proof of Theorem 3.1, is relaxed. It also generalizes the results in [2] where only
type-zero saddle-node equilibrium points were considered.

5. Example

The system of differential equations (5.1) was derived from problems of stability in
power systems analysis [9]:

ẋ = 1− 2, 84sen(x)− 2sen(x− y)
ẏ = 1− 3sen(y)− 2sen(y − x)

(5.1)

The stability region and stability boundary of this system will be illustrated and
the results of Theorem 4.2 will be verified. System (5.1) possesses an asymptoticaly
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stable equilibrium point xs = (0.35; 0.34) and two type-1 saddle-node equilibrium
points on the stability boundary ∂A(xs), they are; q1 = (1, 42; 3, 39) and q2 =
(2, 12;−3, 87). Moreover, eight unstable hyperbolic equilibrium points also belong
to the stability boundary ∂A(xs). The stability boundary ∂A(0, 35; 0, 34) is formed,

according to Theorem 4.2, as the union of the manifolds W c−(q1), W
c−(q2) and the

stable manifolds of the unstable hyperbolic equilibrium points that belong to the
stability boundary, see Figure 3.

Figure 3: The gray area is the stability region of the asymptoticaly stable equilibrium

point xs. The stability boundary ∂A(0, 35; 0, 34) is formed by the stable component of

the center manifolds of the saddle-node equilibrium points q1 and q2 union with the stable

manifolds of all the unstable hyperbolic equilibrium points that belong to the stability

boundary.

6. Conclusions

This paper developed the theory of stability region of nonlinear dynamical systems
by generalizing the existing results on the characterization of the stability boundary
of asymptotically stable equilibrium points. The generalization developed in this
paper considers the existence of a particular type of non-hyperbolic equilibrium
point on the stability boundary, the so called saddle-node equilibrium point.
Necessary and sufficient conditions for a saddle-node equilibrium point lying on
the stability boundary were presented. A complete characterization of the stability
boundary when the system possesses saddle-node equilibrium points on the stability
boundary was developed for a large class of nonlinear dynamical systems. This
characterization is an important step to study the behavior of the stability boundary
and stability region under parameter variation.

Resumo. Uma caracterização dinâmica da fronteira da região de estabilidade
para uma ampla classe de sistemas dinâmicos autônomos é desenvolvida neste ar-
tigo. Essa caracterização generaliza os resultados existentes na medida em que
permite a existência de pontos de equilíbrio sela-nó na fronteira da região de es-
tabilidade. Mostra-se que a fronteira da região de estabilidade de um ponto de
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equilíbrio assintoticamente estável consiste das variedades estáveis dos pontos de
equilíbrio hiperbólicos na fronteira da região de estabilidade e das variedades es-
táveis, centro-estáveis e centrais dos pontos de equilíbrio sela-nó na fronteira da
região de estabilidade.

Palavras-chave. Região de estabilidade, fronteira da região de estabilidade, ponto
de equilíbrio sela-nó.
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