

Weighted Approximation of Continuous Positive Functions

M.S. KASHIMOTO

Received on August 24, 2012 / Accepted on May 17, 2013

ABSTRACT. We investigate the density of convex cones of continuous positive functions in weighted spaces and present some applications.

Keywords: convex cone, weighted space, Bernstein's Theorem.

1 INTRODUCTION AND PRELIMINARIES

Throughout this paper we shall assume, unless stated otherwise, that X is a locally compact Hausdorff space. We shall denote by $C(X; \mathcal{R})$ the space of all continuous real-valued functions on X and by $C_b(X; \mathcal{R})$ the space of continuous and bounded real-valued functions on X. The vector subspace of all functions in $C(X; \mathcal{R})$ with compact support is denoted by $C_c(X; \mathcal{R})$.

An upper semicontinuous real-valued function f on X is said to vanish at infinity if, for every $\varepsilon > 0$, the closed subset $\{x \in X : |f(x)| \ge \varepsilon\}$ is compact.

In what follows, we shall present the concept of *weighted spaces* as developed by Nachbin in [4]. We introduce a set V of non-negative upper semicontinuous functions on X, whose elements are called *weights*. We assume that V is directed, in the sense that, given $v_1, v_2 \in V$, there exist $\lambda > 0$ and $v \in V$ such that $v_1 \le \lambda v$ and $v_2 \le \lambda v$.

Let *V* be a directed set of weights. The vector subspace of $C(X; \mathcal{R})$ of all functions *f* such that vf vanishes at infinity for each $v \in V$ will be denoted by $CV_{\infty}(X; \mathcal{R})$.

When $CV_{\infty}(X; \mathcal{R})$ is equipped with the locally convex topology ω_V generated by the seminorms

$$p_{v}: CV_{\infty}(X; \mathcal{R}) \to \mathcal{R}^{+}$$
$$f \mapsto sup \{v(x)|f(x)| : x \in X\}$$

for each $v \in V$, we call $CV_{\infty}(X; \mathcal{R})$ a weighted space.

We assume that for each $x \in X$, there is $v \in V$ such that v(x) > 0.

In the following we present some examples of weighted spaces.

Departamento de Matemática e Computação, IMC, UNIFEI, Universidade Federal de Itajubá, 37500-903 Itajubá, MG, Brasil. E-mails: kaxixi@unifei.edu.br; mskashim@gmail.com

- (a) If V consists of the constant function 1, defined by $\mathbf{1}(x) = 1$ for all $x \in X$, then $CV_{\infty}(X; \mathcal{R})$ is $C_0(X; \mathcal{R})$, the vector subspace of all functions in $C(X; \mathcal{R})$ that vanish at infinity. In particular, if X is compact then $CV_{\infty}(X; \mathcal{R}) = C(X; \mathcal{R})$. The corresponding weighted topology is the topology of uniform convergence on X.
- (b) Let *V* be the set of characteristic functions of all compact subsets of *X*. Then the weighted space $CV_{\infty}(X; \mathcal{R})$ is $C(X; \mathcal{R})$ endowed with the compact-open topology.
- (c) If V consists of characteristic functions of all finite subsets of X, then $CV_{\infty}(X; \mathcal{R})$ is $C(X; \mathcal{R})$ endowed with the topology of pointwise convergence.
- (d) If $V = \{v \in C_0(X; \mathcal{R}) : v \ge 0\}$, then $CV_{\infty}(X; \mathcal{R})$ is the vector space $C_b(X; \mathcal{R})$. The corresponding weighted topology is the strict topology β (see Buck [1]).

For more information on weighted spaces we refer the reader to [4, 5].

We set $CV_{\infty}^+(X; \mathcal{R}) = \{ f \in CV_{\infty}(X; \mathcal{R}) : f \ge 0 \}.$

A subset $W \subset CV^+_{\infty}(X; \mathcal{R})$ is a convex cone if $\lambda W \subset W$, for each $\lambda \ge 0$ and $W + W \subset W$.

We denote by $CV_{\infty}^+(X; \mathcal{R}) \bigotimes CV_{\infty}^+(Y; \mathcal{R})$ the subset of $CV_{\infty}^+(X \times Y; \mathcal{R})$ consisting of all functions of the form

$$\sum_{i=1}^{n} g_i(x)h_i(y), \qquad x \in X, \ y \in Y$$

where $g_i \in CV^+_{\infty}(X; \mathcal{R}), h_i \in CV^+_{\infty}(Y; \mathcal{R}), i = 1, ..., n, n \in \mathcal{N}.$

Let $W \subset CV_{\infty}^+(X; \mathcal{R})$ be a nonempty subset. A function $\phi \in C(X; \mathcal{R})$, $0 \le \phi \le 1$, is called a *multiplier* of W if $\phi f + (1 - \phi)g \in W$ for every pair f and g of elements of W. The set of all multipliers of W is denoted by M(W). The notion of a multiplier of W is due to Feyel and De La Pradelle [3] and Chao-Lin [2].

For any $x \in X$, $[x]_{M(W)}$ denotes the equivalence class of x, when one defines the following equivalence relation on X: $x \equiv t \pmod{M(W)}$ if, and only if, $\phi(x) = \phi(t)$ for all $\phi \in M(W)$.

A subset $A \subset C(X; \mathcal{R})$ separates the points of X if, given any two distinct points s and t of X, there is a function $\phi \in A$ such that $\phi(s) \neq \phi(t)$.

Weierstrass' first theorem states that any real-valued continuous function f defined on the closed interval [0,1] is the limite of a uniformly convergent sequence of algebraic polynomials. One of the most elementary proofs of this classic result is that which uses the Bernstein polynomials of f

$$(B_n f, x) := \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}, \qquad x \in [0, 1]$$

for each natural number *n*. Bernstein's theorem states that $B_n(f) \to f$ uniformly on [0,1] and, since each $B_n(f)$ is a polynomial, we have as a consequence the Weierstrass approximation theorem. The operator B_n defined on the space C([0, 1]) with values in the vector subspace of

all polynomials of degree at most *n* has the property that $B_n(f) \ge 0$ whenever $f \ge 0$. Thus Bernstein's theorem also establishes the fact that each positive continuous real-valued function on [0, 1] is the limit of a uniformly convergent sequence of positive polynomials.

Consider a compact Hausdorff space X and the convex cone

$$C^+(X; \mathcal{R}) = \{ f \in C(X; \mathcal{R}) : f \ge 0 \}.$$

A generalized Bernstein's theorem would be a theorem stating when a convex cone contained in $C^+(X; \mathcal{R})$ is dense in it.

Prolla [6] proved the following result of uniform density of convex cones in $C^+(X; \mathcal{R})$.

Theorem 1.1. Let X be a compact Hausdorff space. Let $W \subset C^+(X; \mathcal{R})$ be a convex cone satisfying the following conditions:

- (a) given any two distinct points x and y in X, there is a multiplier ϕ of W such that $\phi(x) \neq \phi(y)$;
- (b) given any $x \in X$, there is $g \in W$ such that g(x) > 0.

Then W is uniformly dense in $C^+(X; \mathcal{R})$.

The purpose of this note is to present an extension of this result to weighted spaces and give some applications. The main tool is a Stone-Weierstrass-type theorem for subsets of weighted spaces.

2 THE RESULTS

We need the following lemma, whose proof can be found in [7].

Lemma 2.1. Let W be a nonempty subset of $CV_{\infty}(X; \mathcal{R})$. Given any $f \in CV_{\infty}(X; \mathcal{R})$, $v \in V$ and $\varepsilon > 0$, the following statements are equivalent:

- 1. there exists $h \in W$ such that $v(x) || f(x) h(x) || < \varepsilon$ for all $x \in X$;
- 2. for each $x \in X$, there exists $g_x \in W$ such that $v(t) || f(t) g_x(t) || < \varepsilon$ for all $t \in [x]_{M(W)}$.

Now we state the main result.

Theorem 2.1. Let $W \subset CV_{\infty}^+(X; \mathcal{R})$ be a convex cone satisfying the following conditions:

- (a) given any two distinct points x and y in X, there exists a multiplier φ of W such that φ(x) ≠ φ(y);
- (b) given any $x \in X$, there exists $g \in W$ such that g(x) > 0.

Then W is ω_V -dense in $CV^+_{\infty}(X; \mathcal{R})$.

Tend. Mat. Apl. Comput., 14, N. 2 (2013)

Proof. Let x be an arbitrary element of X. Condition (a) implies that $[x]_{M(W)} = \{x\}$. By condition (b), there exists $g \in W$ such that g(x) > 0. Then, for any $f \in CV^+_{\infty}(X; \mathcal{R}), v \in V$ and $\varepsilon > 0$, we have

$$v(x) \left\| f(x) - \frac{f(x)}{g(x)} g(x) \right\| = 0 < \varepsilon.$$

Since W is a convex cone, $\frac{f(x)}{g(x)}g \in W$. Then, it follows from Lemma 2.1 that there exists $h \in W$ such that $v(t) \| f(t) - h(t) \| < \varepsilon$ for all $t \in X$.

Corollary 2.1. Let X and Y be locally compact Hausdorff spaces. Then

$$CV_{\infty}^{+}(X; \mathcal{R}) \bigotimes CV_{\infty}^{+}(Y; \mathcal{R})$$

is dense in $CV^+_{\infty}(X \times Y; \mathcal{R})$.

Proof. It follows from Urysohn's Lemma [8] that for any two distinct elements (s, t) and (u, v) of $X \times Y$, there exist functions $h_1 \in C_c(X; \mathcal{R})$ and $h_2 \in C_c(Y; \mathcal{R})$, $0 \le h_1, h_2 \le 1$, such that $\varphi(x, y) := h_1(x)h_2(y)$ is a multiplier of $CV_{\infty}^+(X; \mathcal{R}) \bigotimes CV_{\infty}^+(Y; \mathcal{R})$ and $\varphi(s, t) = 1$ and $\varphi(u, v) = 0$. Hence, condition (a) of Theorem 2.1 is satisfied.

By using Urysohn's Lemma again, given $(x, y) \in X \times Y$, there exist $\phi \in C_c(X; \mathcal{R})$ and $\psi \in C_c(Y; \mathcal{R})$ such that $\phi(x) = 1$ and $\psi(y) = 1$ so that $\phi(x)\psi(y) > 0$,

$$\phi\psi \in CV^+_{\infty}(X;\mathcal{R})\bigotimes CV^+_{\infty}(Y;\mathcal{R}).$$

Then, condition (b) of Theorem 2.1 is satisfied. Hence, the assertion follows by Theorem 2.1. \Box

Example 2.1. Consider $CV_{\infty}^+(\mathcal{R}; \mathcal{R})$, where *V* is the set of characteristic functions of all compact subsets of \mathcal{R} . Let $\psi \in C(\mathcal{R}; \mathcal{R})$, $0 \le \psi \le 1$, be a one-to-one function. Let *W* be the set of all functions *g* of the form

$$g(x) = \sum_{i+j \le n} b_{ij} \psi(x)^i (1 - \psi(x))^j, \qquad x \in \mathcal{R}$$

where each b_{ij} is a non-negative real number and i, j, n are non-negative integers numbers. Note that $W \subset CV_{\infty}^+(\mathcal{R}; \mathcal{R})$ is a convex cone.

Since $\psi \in M(W)$ and W contains positive constant functions, it follows from Theorem 2.1 that W is dense in $CV^+_{\infty}(\mathcal{R}; \mathcal{R})$.

Example 2.2. Let *a* be a fixed positive real number. Let *W* be the set of all functions of the form

$$f(x)e^{-ax}, x \in [0, \infty), f \in C_h^+([0, \infty); \mathcal{R}).$$

Clearly, W is a convex cone contained in $C_0^+([0,\infty); \mathcal{R})$. The function e^{-ax} , $x \in [0,\infty)$, belongs to W and is a multiplier of W that separates the points of X. Hence, by Theorem 2.1 W is dense in $C_0^+([0,\infty); \mathcal{R})$.

RESUMO. Investigamos a densidade de cones convexos de funções contínuas positivas em espaços ponderados e apresentamos algumas aplicações.

Palavras-chave: cone convexo, espaço ponderado, Teorema de Bernstein.

REFERENCES

- R.C. Buck. Bounded continuous functions on a locally compact space. *Michigan Math. J.*, 5 (1958), 95–104.
- M. Chao-Lin. Sur l'approximation uniforme des fonctions continues. C. R. Acad. Sci. Paris Ser. 1. Math., 301 (1985), 349–350.
- [3] D. Feyel & A. De La Pradelle. Sur certaines extensions du Théorème d'Approximation de Bernstein. Pacific J. Math., 115 (1984), 81–89.
- [4] L. Nachbin. "Elements of Approximation Theory". Van Nostrand, Princeton, NJ, 1967, reprinted by Krieger, Huntington, NY (1976).
- [5] J.B. Prolla. "Approximation of Vector-Valued Functions". Mathematics Studies, 25, North-Holland, Amsterdam (1977).
- [6] J.B. Prolla. A generalized Bernstein approximation theorem. *Math. Proc. Camb. Phil. Soc.*, 104 (1988), 317–330.
- [7] J.B. Prolla & M.S. Kashimoto. Simultaneous approximation and interpolation in weighted spaces. *Rendi. Circ. Mat. di Palermo*, Serie II – Tomo LI (2002), 485–494.
- [8] W. Rudin. "Real and Complex Analysis". McGraw-Hill, Singapore, Third Edition (1987).