Weighted Approximation of Continuous Positive Functions

M.S. KASHIMOTO

Received on August 24, 2012 / Accepted on May 17, 2013

Abstract

We investigate the density of convex cones of continuous positive functions in weighted spaces and present some applications.

Keywords: convex cone, weighted space, Bernstein's Theorem.

1 INTRODUCTION AND PRELIMINARIES

Throughout this paper we shall assume, unless stated otherwise, that X is a locally compact Hausdorff space. We shall denote by $C(X ; \mathcal{R})$ the space of all continuous real-valued functions on X and by $C_{b}(X ; \mathcal{R})$ the space of continuous and bounded real-valued functions on X. The vector subspace of all functions in $C(X ; \mathcal{R})$ with compact support is denoted by $C_{c}(X ; \mathcal{R})$.

An upper semicontinuous real-valued function f on X is said to vanish at infinity if, for every $\varepsilon>0$, the closed subset $\{x \in X:|f(x)| \geq \varepsilon\}$ is compact.

In what follows, we shall present the concept of weighted spaces as developed by Nachbin in [4]. We introduce a set V of non-negative upper semicontinuous functions on X, whose elements are called weights. We assume that V is directed, in the sense that, given $v_{1}, v_{2} \in V$, there exist $\lambda>0$ and $v \in V$ such that $v_{1} \leq \lambda v$ and $v_{2} \leq \lambda v$.

Let V be a directed set of weights. The vector subspace of $C(X ; \mathcal{R})$ of all functions f such that $v f$ vanishes at infinity for each $v \in V$ will be denoted by $C V_{\infty}(X ; \mathcal{R})$.

When $C V_{\infty}(X ; \mathcal{R})$ is equipped with the locally convex topology ω_{V} generated by the seminorms

$$
\begin{aligned}
p_{v}: C V_{\infty}(X ; \mathcal{R}) & \rightarrow \mathcal{R}^{+} \\
f & \mapsto \sup \{v(x)|f(x)|: x \in X\}
\end{aligned}
$$

for each $v \in V$, we call $C V_{\infty}(X ; \mathcal{R})$ a weighted space.
We assume that for each $x \in X$, there is $v \in V$ such that $v(x)>0$.
In the following we present some examples of weighted spaces.
(a) If V consists of the constant function $\mathbf{1}$, defined by $\mathbf{1}(x)=1$ for all $x \in X$, then $C V_{\infty}(X ; \mathcal{R})$ is $C_{0}(X ; \mathcal{R})$, the vector subspace of all functions in $C(X ; \mathcal{R})$ that vanish at infinity. In particular, if X is compact then $C V_{\infty}(X ; \mathcal{R})=C(X ; \mathcal{R})$. The corresponding weighted topology is the topology of uniform convergence on X.
(b) Let V be the set of characteristic functions of all compact subsets of X. Then the weighted space $C V_{\infty}(X ; \mathcal{R})$ is $C(X ; \mathcal{R})$ endowed with the compact-open topology.
(c) If V consists of characteristic functions of all finite subsets of X, then $C V_{\infty}(X ; \mathcal{R})$ is $C(X ; \mathcal{R})$ endowed with the topology of pointwise convergence.
(d) If $V=\left\{v \in C_{0}(X ; \mathcal{R}): v \geq 0\right\}$, then $C V_{\infty}(X ; \mathcal{R})$ is the vector space $C_{b}(X ; \mathcal{R})$. The corresponding weighted topology is the strict topology β (see Buck [1]).

For more information on weighted spaces we refer the reader to [4, 5].
We set $C V_{\infty}^{+}(X ; \mathcal{R})=\left\{f \in C V_{\infty}(X ; \mathcal{R}): f \geq 0\right\}$.
A subset $W \subset C V_{\infty}^{+}(X ; \mathcal{R})$ is a convex cone if $\lambda W \subset W$, for each $\lambda \geq 0$ and $W+W \subset W$.
We denote by $C V_{\infty}^{+}(X ; \mathcal{R}) \otimes C V_{\infty}^{+}(Y ; \mathcal{R})$ the subset of $C V_{\infty}^{+}(X \times Y ; \mathcal{R})$ consisting of all functions of the form

$$
\sum_{i=1}^{n} g_{i}(x) h_{i}(y), \quad x \in X, y \in Y
$$

where $g_{i} \in C V_{\infty}^{+}(X ; \mathcal{R}), h_{i} \in C V_{\infty}^{+}(Y ; \mathcal{R}), i=1, \ldots, n, n \in \mathcal{N}$.
Let $W \subset C V_{\infty}^{+}(X ; \mathcal{R})$ be a nonempty subset. A function $\phi \in C(X ; \mathcal{R}), 0 \leq \phi \leq 1$, is called a multiplier of W if $\phi f+(1-\phi) g \in W$ for every pair f and g of elements of W. The set of all multipliers of W is denoted by $M(W)$. The notion of a multiplier of W is due to Feyel and De La Pradelle [3] and Chao-Lin [2].

For any $x \in X,[x]_{M(W)}$ denotes the equivalence class of x, when one defines the following equivalence relation on $X: x \equiv t(\bmod M(W))$ if, and only if, $\phi(x)=\phi(t)$ for all $\phi \in M(W)$.
A subset $A \subset C(X ; \mathcal{R})$ separates the points of X if, given any two distinct points s and t of X, there is a function $\phi \in A$ such that $\phi(s) \neq \phi(t)$.
Weierstrass' first theorem states that any real-valued continuous function f defined on the closed interval $[0,1]$ is the limite of a uniformly convergent sequence of algebraic polynomials. One of the most elementary proofs of this classic result is that which uses the Bernstein polynomials of f

$$
\left(B_{n} f, x\right):=\sum_{k=0}^{n}\binom{n}{k} f\left(\frac{k}{n}\right) x^{k}(1-x)^{n-k}, \quad x \in[0,1]
$$

for each natural number n. Bernstein's theorem states that $B_{n}(f) \rightarrow f$ uniformly on $[0,1]$ and, since each $B_{n}(f)$ is a polynomial, we have as a consequence the Weierstrass approximation theorem. The operator B_{n} defined on the space $C([0,1])$ with values in the vector subspace of
all polynomials of degree at most n has the property that $B_{n}(f) \geq 0$ whenever $f \geq 0$. Thus Bernstein's theorem also establishes the fact that each positive continuous real-valued function on $[0,1]$ is the limit of a uniformly convergent sequence of positive polynomials.

Consider a compact Hausdorff space X and the convex cone

$$
C^{+}(X ; \mathcal{R})=\{f \in C(X ; \mathcal{R}): f \geq 0\} .
$$

A generalized Bernstein's theorem would be a theorem stating when a convex cone contained in $C^{+}(X ; \mathcal{R})$ is dense in it.

Prolla [6] proved the following result of uniform density of convex cones in $C^{+}(X ; \mathcal{R})$.
Theorem 1.1. Let X be a compact Hausdorff space. Let $W \subset C^{+}(X ; \mathcal{R})$ be a convex cone satisfying the following conditions:
(a) given any two distinct points x and y in X, there is a multiplier ϕ of W such that $\phi(x) \neq \phi(y) ;$
(b) given any $x \in X$, there is $g \in W$ such that $g(x)>0$.

Then W is uniformly dense in $C^{+}(X ; \mathcal{R})$.
The purpose of this note is to present an extension of this result to weighted spaces and give some applications. The main tool is a Stone-Weierstrass-type theorem for subsets of weighted spaces.

2 THE RESULTS

We need the following lemma, whose proof can be found in [7].

Lemma 2.1. Let W be a nonempty subset of $C V_{\infty}(X ; \mathcal{R})$. Given any $f \in C V_{\infty}(X ; \mathcal{R}), v \in V$ and $\varepsilon>0$, the following statements are equivalent:

1. there exists $h \in W$ such that $v(x)\|f(x)-h(x)\|<\varepsilon$ for all $x \in X$;
2. for each $x \in X$, there exists $g_{x} \in W$ such that $v(t)\left\|f(t)-g_{x}(t)\right\|<\varepsilon$ for all $t \in[x]_{M(W)}$.

Now we state the main result.
Theorem 2.1. Let $W \subset C V_{\infty}^{+}(X ; \mathcal{R})$ be a convex cone satisfying the following conditions:
(a) given any two distinct points x and y in X, there exists a multiplier ϕ of W such that $\phi(x) \neq \phi(y) ;$
(b) given any $x \in X$, there exists $g \in W$ such that $g(x)>0$.

Then W is ω_{V}-dense in $C V_{\infty}^{+}(X ; \mathcal{R})$.

Proof. Let x be an arbitrary element of X. Condition (a) implies that $[x]_{M(W)}=\{x\}$. By condition (b), there exists $g \in W$ such that $g(x)>0$. Then, for any $f \in C V_{\infty}^{+}(X ; \mathcal{R}), v \in V$ and $\varepsilon>0$, we have

$$
v(x)\left\|f(x)-\frac{f(x)}{g(x)} g(x)\right\|=0<\varepsilon .
$$

Since W is a convex cone, $\frac{f(x)}{g(x)} g \in W$. Then, it follows from Lemma 2.1 that there exists $h \in W$ such that $v(t)\|f(t)-h(t)\|<\varepsilon$ for all $t \in X$.

Corollary 2.1. Let X and Y be locally compact Hausdorff spaces. Then

$$
C V_{\infty}^{+}(X ; \mathcal{R}) \bigotimes C V_{\infty}^{+}(Y ; \mathcal{R})
$$

is dense in $C V_{\infty}^{+}(X \times Y ; \mathcal{R})$.

Proof. It follows from Urysohn's Lemma [8] that for any two distinct elements (s, t) and (u, v) of $X \times Y$, there exist functions $h_{1} \in C_{c}(X ; \mathcal{R})$ and $h_{2} \in C_{c}(Y ; \mathcal{R}), 0 \leq h_{1}, h_{2} \leq 1$, such that $\varphi(x, y):=h_{1}(x) h_{2}(y)$ is a multiplier of $C V_{\infty}^{+}(X ; \mathcal{R}) \otimes C V_{\infty}^{+}(Y ; \mathcal{R})$ and $\varphi(s, t)=1$ and $\varphi(u, v)=0$. Hence, condition (a) of Theorem 2.1 is satisfied.
By using Urysohn's Lemma again, given $(x, y) \in X \times Y$, there exist $\phi \in C_{c}(X ; \mathcal{R})$ and $\psi \in C_{c}(Y ; \mathcal{R})$ such that $\phi(x)=1$ and $\psi(y)=1$ so that $\phi(x) \psi(y)>0$,

$$
\phi \psi \in C V_{\infty}^{+}(X ; \mathcal{R}) \bigotimes C V_{\infty}^{+}(Y ; \mathcal{R})
$$

Then, condition (b) of Theorem 2.1 is satisfied. Hence, the assertion follows by Theorem 2.1.
Example 2.1. Consider $C V_{\infty}^{+}(\mathcal{R} ; \mathcal{R})$, where V is the set of characteristic functions of all compact subsets of \mathcal{R}. Let $\psi \in C(\mathcal{R} ; \mathcal{R}), 0 \leq \psi \leq 1$, be a one-to-one function. Let W be the set of all functions g of the form

$$
g(x)=\sum_{i+j \leq n} b_{i j} \psi(x)^{i}(1-\psi(x))^{j}, \quad x \in \mathcal{R}
$$

where each $b_{i j}$ is a non-negative real number and i, j, n are non-negative integers numbers. Note that $W \subset C V_{\infty}^{+}(\mathcal{R} ; \mathcal{R})$ is a convex cone.

Since $\psi \in M(W)$ and W contains positive constant functions, it follows from Theorem 2.1 that W is dense in $C V_{\infty}^{+}(\mathcal{R} ; \mathcal{R})$.

Example 2.2. Let a be a fixed positive real number. Let W be the set of all functions of the form

$$
f(x) e^{-a x}, x \in[0, \infty), \quad f \in C_{b}^{+}([0, \infty) ; \mathcal{R})
$$

Clearly, W is a convex cone contained in $C_{0}^{+}([0, \infty) ; \mathcal{R})$. The function $e^{-a x}, x \in[0, \infty)$, belongs to W and is a multiplier of W that separates the points of X. Hence, by Theorem $2.1 W$ is dense in $C_{0}^{+}([0, \infty) ; \mathcal{R})$.

RESUMO. Investigamos a densidade de cones convexos de funções contínuas positivas em espaços ponderados e apresentamos algumas aplicações.

Palavras-chave: cone convexo, espaço ponderado, Teorema de Bernstein.

REFERENCES

[1] R.C. Buck. Bounded continuous functions on a locally compact space. Michigan Math. J., 5 (1958), 95-104.
[2] M. Chao-Lin. Sur l'approximation uniforme des fonctions continues. C. R. Acad. Sci. Paris Ser. 1. Math., 301 (1985), 349-350.
[3] D. Feyel \& A. De La Pradelle. Sur certaines extensions du Théorème d'Approximation de Bernstein. Pacific J. Math., 115 (1984), 81-89.
[4] L. Nachbin. "Elements of Approximation Theory". Van Nostrand, Princeton, NJ, 1967, reprinted by Krieger, Huntington, NY (1976).
[5] J.B. Prolla. "Approximation of Vector-Valued Functions". Mathematics Studies, 25, North-Holland, Amsterdam (1977).
[6] J.B. Prolla. A generalized Bernstein approximation theorem. Math. Proc. Camb. Phil. Soc., 104 (1988), 317-330.
[7] J.B. Prolla \& M.S. Kashimoto. Simultaneous approximation and interpolation in weighted spaces. Rendi. Circ. Mat. di Palermo, Serie II - Tomo LI (2002), 485-494.
[8] W. Rudin. "Real and Complex Analysis". McGraw-Hill, Singapore, Third Edition (1987).

