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Abstract. The construction and analysis of high order numerical methods for
Volterra integral equations with a certain weakly singular kernel have been inves-
tigated in [6], under the assumption that the solution is sufficiently smooth. In
the present work we give a more detailed convergence analysis and show how the
continuity requirements can be relaxed, in particular by employing the techniques
developed in [13]. Several numerical results are presented.

1. Introduction

We consider the Volterra integral equation of the second kind

F(t)—i—/tP(t,s)F(s)ds:H(t), te0,7], (1.1)

where 1 1 1

P(t,s) i = —=————=-

V7 /In(t/s) t

and H(t) is a given function. The above equation arises in some heat conduction
problems with mixed-type boundary conditions [1]. As an illustration, consider

(1.2)
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with the conditions
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u(z, —00) =0, (1.4)
2 0,0) — u(0,1) = 6x(0) (15)
O 0,1) 1, ) = onl0). (16)

The solution u(x,t) can be expressed in terms of single layer potentials (see e.g. [1],
[18]) as follows

—x? —(z—1p)?

mao—i%/t@r>m pi(r) 4P =7) 4 po(r) 4Pt =T) | ar (1)

Above p1(7), p2(T) are such that u(z, t) satisfies conditions (1.4)-(1.6). By imposing
those conditions, the following system of two integral equations is obtained
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where ¥y (s) := pr(—Ins), Hi(s) := 2¢r(—Ins). If [ is large compared to a, then
we may consider the system

e (@) e (@) =m ) 0w

a [ 1 1 1 1 1
—— _— = — | dz— —|=Hy|—-]. 1.11
ﬁ/@ VIn(u/z) T & <$> v <U> ’ (u) (1)
We note that the above equations are independent and may be treated separately,
each of them being of the form of (1.1). A more complex problem leading to a
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system of equations of the type of (1.1) was considered by Bartoshevich [1]. In
[2] he developed a method for its solution which involved expansions in terms of
Watson’s operators. Sub-Sizonenko [19] provided an analytic L5 solution for (1.1)
and other expressions valid in weighted £, spaces were derived by Rooney [17] and
Lamb ([11], [12]) but none is useful if a tabulated solution is required.

We note that fot P(t,s)ds is divergent. Following [12] we use the transformations

y(t) =t "F(t),  f(t) =t""H(), (1.12)

where £ > 0 is a constant. From (1.1) we obtain

MﬂﬁAdMM®®=ﬂm te o), (1.13)

with

1 1 S\H 1
q(t,s) = ﬁ\/ﬁ (;) 5 (1.14)

In [5] this equation has been transformed into the more tractable equation

y@—Amww®@=W%tewﬂ, (1.15)

with

plt.s) = (3)" 1 (1.16)

t S

We have the following existence and uniqueness results.

Theorem 1 For a given non-negative integer m, let V;,[0,T] denote the normed
space of the real functions ¢ such that ¢ € C™[0,T] with

— @) ’
[9llm = max mas |69)(0)].
(i) [5] Let > 1 in(1.14) and (1.16). If the function f in (1.13) belongs to Vi,
then the problem (1.13) — (1.14) possesses a unique solution y € V. Similarly,
if the function g in (1.15) belongs to V,, then (1.15) — (1.16) possesses a unique
solution y € Vy,. Moreover, if g is given by

ngﬂw;A«mV@w

then the solution of the problem (1.13) —(1.14) is also the solution of (1.15) —(1.16).

(i6) [8] Let 0 < p<1in (1.14) and (1.16). Then equations (1.13) — (1.14)
and (1.15) — (1.16) have a family of solutions in C[0,T] of which only one has C*
continuity.
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It should be noted that (i) is in contrast with the smoothness properties of
weakly singular equations possessing a singularity in the kernel of the form k(t, s) =
(t—s)"*0 < a <1 ( Abel type equations). For those equations, a smooth forcing
function leads to a solution which has typically unbounded derivatives at ¢ = 0. Fur-
thermore, unlike the function k, the functions g and p do not satisfy fot q(t,s)ds — 0

ast — 0 and fotp(t,s)ds — 0 as t — 0. In fact these integrals are constant and
equal to 1/ Vi and 1/p, respectively. Finally, all the iterated kernels associated
with p (we note that ¢ is the iterated kernel of second order) are unbounded. The
ideas of iterated and discrete iterated kernels were used by Dixon and McKee [7]
to obtain generalised weakly singular Gronwall inequalities (see also [3]). These
are an important tool for proving convergence of discretization methods for weakly
singular equations but it is usually required the existence of at least one bounded
iterated kernel. Owing to the above properties, special techniques are needed to
prove convergence of discretization methods for the above equations. Tang et al [20]
applied the product Euler and Trapezoidal methods to equation (1.13)-(1.14) and
obtained approximations to y(t) of orders one and two, respectively. Diogo et al
[5] considered a fourth order Hermite-type collocation method for (1.15)-(1.16) and
Lima and Diogo [13] developed an extrapolation method, based on Euler’s method.
By introducing some appropriate function spaces they were also able to consider
unbounded solutions. Recently, in [6], the construction of high order numerical
methods for (1.15)-(1.16) has been investigated, under the assumption that the
solution is sufficiently smooth. In this work we give a more detailed convergence
analysis of those methods and show how the continuity requirements can be relaxed,
in particular by employing the techniques developed in [13]. Related methods have
been studied by several authors for Abel equations. Linz [14] considered a product
integration method based on Simpson’s rule and proved convergence of order three.
By a sharper analysis, de Hoog and Weiss ([9],[10]) were able to prove that, for
a = 1/2, the convergence order was in fact 7/2. Cameron and McKee [4] extended
the results of [10] to higher order methods.

This paper is organised as follows. In Section 2 a class of product integration
methods based on the use of a main interpolatory quadrature rule together with
several end rules is introduced. The consistency order of these methods is analysed
in Section 3. In general, if the main rule is based on n 4+ 1 points, then consistency
of order n + 1 can be achieved if the solution y(t) is in C"™1[0,7]. However, if
w is sufficiently high, these continuity requirements can be relaxed. Following the
approach used in [13], an appropriate transformation of the dependent variable is
made so that the new equation possesses smooth solutions. The methods of Section
2 can then be applied to the transformed equation. Finally, sufficient conditions for
product integration methods to be convergent are derived in Section 4. Two results
were obtained; the former requires the sum of the modulus of the weights to be
uniformly bounded by some constant less than one; the latter requires the weights
to be non-negative. In Section 4 an example of a method corresponding to n = 2
is considered and its convergence properties discussed. The paper concludes with a
sample of numerical examples illustrating the theoretical results obtained.
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2. High order product integration methods

In order to construct numerical methods for (1.15)-(1.16), let us define the grid

and consider the discretised form of (1.15)
ti
o)~ [ bl (s = g(t), 0<i<N. (2.1)
0

To approximate the integral in (2.1), some (n + 1)-point interpolatory formula
is used repeatedly, followed by an end rule or a series of end rules when necessary.
The coefficients of the resulting quadrature are calculated analytically.

Suppose first that 4 is a multiple of n, say i = nr. We can rewrite (2.1) as

w0 =3 [ (2) Lot as = gte. 22)

j=0"tnj ti

Approximating y(s),s € (t;,t;4n) by a polynomial of degree n, yields

[ b [ (3 s

i
where the [ are the Lagrange polynomials of degree n associated with t;,%;41, -+ -,

tj4n, that is
n

5 —tjti
l(s) = = 9" 0<k<n.
1:! Ljtk —tjvi
ik

By making the transformation s = ¢; 4+ vh, we have
titn s I 1 n (t +'Uh,)u71
— | —lk(s)ds = h/ ~L i (t; + vh)dv
/tj (tz) 5k 0 (ta)" s )

1
T (j + ) pp(v)dv, (2.4)
0

where pj, is a polynomial of degree n, given by

pu0) 1= Ialt; +oh) = ]| 7= L (2.5)

Let us define
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Substituting (2.4) into (2.3) and using (2.6), we obtain

/tj+’"«
t

)

S

(_>H éy(s)ds ~ ziﬂ Zy(tj+k)bk(j)' (2.7)
k=0

t;

Combining (2.7) and (2.2), we obtain for the case i = nr the following equation

r—1 n

Ynr — ﬁ Z Zynj+k bk(nj) = g(tnr)a (28)

§=0 k=0
where the y; are approximate values of y(¢;).

When i is not a multiple of n, say i =nr+v, 1 <v <n—1, it is convenient to
rewrite (2.1) in the form

y(ts) — / T (s, s)y(s)ds — / Lt ey(s)ds = gt).  (29)

ti—n—v

The integral over [0,¢; ,_,] is approximated by the main repeated formula. In
order to approximate the integral over [t;—,—,,¢;], end rules based on polynomial
interpolation of degrees (n + 1), (n +2),---,(2n — 1) are used. Thus

tq ntv t N
/ plts,s)y(s)ds = > y(tifnfwrj)/ p(ti, s)l;(s)ds, (2.10)
ti—n—v j=0 ti—n—v

where the l~j are the Lagrange polynomials of degree n+ v associated with the points
ti—n—v+j, 0= 7 <n+v. Making the transformation s =t;_,,_, + vh, we obtain

ti s 12 1- 1 n—+v )
/t-, i (E) ;lj(s)ds = ; (t—n—v+v)* " p;j(v)dy, (2.11)
where
B n+v v — k
pj(v) :=1l;(ti—n—p +vh) = g R 0<ji<n+uw. (2.12)
-y
Let us define
n+v
dy (i) :2/ (i—n—v+o)" ppv)dv, 0<k<n+wv (2.13)
0

Combining (2.10) and (2.11) and using (2.13) results in

t; n+v
[ stesods = 5> ultiamvi) i) (219
k=0

ti—n—v
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Substituting (2.14) into (2.9) and treating the first integral in (2.9) as the one
in (2.2), gives the following approximate equation for the case when i = nr + v

r—2 n n+v
1 . v

Ynr+v — (nr o) Z Zynj-wc be(ng) + Z Ynr—ntk dp(nr +v) | = g(tpriv).

§=0 k=0 k=0
(2.15)

Combining (2.8) and (2.15), we obtain the discretization method
B,y =0 (2.16)
with

[th]z B { Yi — Z;:[] WijY; — Yi, n < 1 < Na (217)

where g;, 0 < i < n —1, are given starting values. We note that, since p > 1, all
the integrals involved can be calculated analytically.

3. Convergence

Let 6(h,t;) denote the local consistency error, defined by
t; s H 1 i
S(h.t;) = /0 (t_> ~y(s)ds - ;}wijy(tj). (3.1)

We require the following definition of consistency.

Definition 1 The discretization (2.16) — (2.17) is said to be consistent of order p
with (1.15) — (1.16) at t = t;,i > n, if there exists a constant C, independent of h,
such that for h € (0, hg), ho > 0, we have

5(h,t;)] < ChP. (3.2)

Theorem 2 Ify € C™[0,T],0 < m <n+1, then 6(h,t;) = O (™). In particular,
if y € C"Y0,T) then the discretization (2.16) — (2.17) is consistent of order n+ 1.

When n is even, it is possible to have higher consistency order if y is sufficiently
smooth.

Theorem 3 Suppose that n is even. If y € C™2[0,T] and y™+tV(0) = 0 then
5(h,t:) = O(h+2).



380 Diogo, Lima and Franco

Non-smooth solutions

We have seen that in order to obtain consistency of order at least n + 1, the
function y(t) was required to be at least in the class C" 1[0, 7] (cf. Theorems 2
and 3). We now show that these continuity requirements can be relaxed if pu is
sufficiently high. Following the approach used in [13], we can transform the original
equation into a new equation, so that the two equations are equivalent away from the
origin. Moreover, the corresponding solution of the new equation will be smooth.
Let 8 > 0 be such that g — 8 > 1. Multiplying both sides of (1.15) by ¢ and
defining

y(t) == t7y(t), (3.3)

g(t) :=t"g(1) (3.4)
we obtain the equation

s\r=B1 _

i) - | ()7 L gteyas = 0. (3.5)

which is equivalent to (1.15) for ¢ > 0. If we apply the scheme (2.16)-(2.17) to this
equation, we obtain approximations 7, of F(t;) = tfy(tk), k > n. Then we take

as an approximation to y(t;) the value 7 /tf_. The idea is to chose [ such that
tPy(t) will have the required continuity. Let &(h,t;) denote the consistency error
associated with the scheme (2.16)-(2.17) applied to the transformed equation (3.5).

Theorem 4 Let 3 be a real number such that 0 < < p— 1. If tOy(t) €
Cc™0,T], 0 <m <n+1, then 6(h,t;) = O(h™).

Theorem 5 Let y(t) = t* f(t), with f(t) € C**0,T]. If § is such that 0 < 3 <
w—1 and o+ 3 is an integer then §(h,t;) = O(h™™1).

Two convergence results

We start with the following Definition.

Definition 2 The starting values are said to be convergent of order p if there exists
a constant Cs, independent of h, such that

|y(tz) — yz| S Czhp, 0 S ) S n— 1. (36)

Theorem 6 If the exact solution y of (1.15) — (1.16) is such that the discretization
(2.16) — (2.17) is consistent of order p(p < n+2), the starting values are convergent
of order p and the weights w;; satisfy the condition

i—1

ZMSQ<L i=mn,n+1,.... (37)
£~ 1 — |wg|



Singular Integral Equations 381

then the scheme (2.16) — (2.17) is convergent of order p.

Proof: Let us define e; := y(t;) — y;. We have

ti i
/ p(ts, s)y(s)ds — sz‘jyj
0 ;
7=0

sz‘j(y(tj) —yj) + /0 ip(tz', s)y(s)ds — Zwijy(tj)v (3-8)

€

which gives, after using (3.1) and taking modulus,

1—1
leal (1= wiil) < Y llwiglles| + 160k, t:)- (3.9)
j=0

It can be proved that

Then we obtain, for some constant C' independent of h,
i—1

il < 3 T e+ O (3.11)
=0 i

where we have used (3.2). Finally, an application of a Gronwall Lemma [14] yields
the desired result. n

Theorem 7 If the exact solution y of (1.15) — (1.16) is such that the discretization
(2.16) — (2.17) is consistent of order p(p < n+2), the starting values are convergent
of order p and the weights w;; are non-negative, then the scheme (2.16) — (2.17) is
convergent of order p.

Proof Taking modulus in (3.8) and using (3.2) yields

i
leil < |wijlle;| + ChP. (3.12)
=0
It can be shown that

: 1
j=0

Defining E := maxo<j<n{|e;|}, it follows from (3.12) that

€

1
< —E+ChP, n<i<N, (3.14)
I
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which then implies

E
B< o +Ch (3.15)
Since p > 1, (3.15) yields that
E< Llcm’ < CLhP. (3.16)
-

4. The product Simpson’s method

We consider the case when n = 2. To approximate the integral in (2.1), the product
Simpson’s rule is used repeatedly over [0,¢;] if ¢ is even. When i is odd, we use the
product Simpson’s rule over [0,¢; 3] and the product three-eights rule will be used
over [t;_s,t;]. In this case, (2.8) and (2.15) take the form, respectively,

r—1 2

1 .
Yor — @) Z Zy2j+k bi(27) = g(tay) (4.1)
§=0 k=0
and
1 r—2 2 3
Yor+1 — W Zy2j+k bi(24) + Zy2r72+k di(QT +1) | = g(tarsa),
=0 k=0 k=0

(4.2)
with the bg(j) and d},(i) defined by (2.6) and (2.13), respectively.

We note that, unlike in the Trapezoidal method (corresponding to the case
n = 1), the condition w;; > 0 does not hold for all ¢,j and all values of y > 1.
Therefore, we cannot apply Theorem 7 for all values of . However we have the
following result.

Theorem 8 Let 1 < p < 2. Consider the integrals by(2r), k =0,1,2, » > 0; and
di(2r+1), 1 =0,1,2,3, r > 1. We have by(2r) = 0 if r = 0 and pu = 2 and
in the remaining cases all the integrals by(2r) and d}(2r + 1) are positive. As a
consequence, the weights w;; of algorithm (4.1) — (4.2) satisfy

w20, i=1,2,...;5=0,1,.... (4.3)
Assuming consistency, from Theorems 8 and 7 it follows immediately that Simp-

son’s method is convergent if 1 < u < 2. Convergence for the values p > 2 will be
established with the help of Theorem 6 and this will require the following result.
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Theorem 9 Let ;1 > 1. Then the weights w;; of algorithm (4.1) — (4.2) satisfy

A
: —2, 1 =2r,
i u
(@) > lwiyl < \ (4.4)
=0 23 i=2r+1, r>1,
i
1 .
) 0<wn< L i=2.3,... 4.5

Above Ny = 1.25 and A3 = 1.63113 are the Lebesgue constants associated with the
Lagrange polynomials of second and third degrees, respectively (see e.g. [16]).

We are now in a position to apply Theorem 6 in the case p > 2. Indeed, from
(4.4) and (4.5) it follows that

i—1

i 1.63113 2 +3 2
) il WEONEE 93, (4.6)
]_:Ol—u}ii 1% w24 2p 42

That is, condition (3.7) is satisfied with p = 1.63113 (u®>+3u+2)/(u3+2u2+2p) < 1,
since p > 2. This completes the proof of convergence (of order p) of the product
Simpson’s method for all values of x> 1, assuming that it is consistent of order p
and that the starting values are convergent of the same order.

Remark 1 By similar arguments to the ones employed in the proof of Theo-
rem 8, it can be shown that the weights of the discretization method (2.16)-(2.17)
in the case n = 1 are non-negative for all values of y; in the cases n = 3,n = 4 the
weights are non-negative for the values 1 < p < 2. Therefore, convergence of the
methods obtained with n = 1, 3,4 is assured for the corresponding values of .

5. Numerical results

In order to illustrate the theoretical results of the previous Sections we have con-
sidered the numerical solution of equation (1.15)-(1.16), with g(¢t) = t* (u —1)/u
and exact solution y(t) = t%, ¢t € [0,2]. The following choices of o and p have been
considered.

Example 1: ¢ = 1.5 and o = 6.5;

Example 2: 4 = 1.3 and a = 3.0;

Example 3: ;4 =5.0 and o = —0.2.
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In Tables 1-5 the errors |e;| = |y(¢;) — yi| produced with several numerical
methods of the type (2.16)-(2.17) are displayed for the cases n = 2,3, 4.

Table 1 contains the errors obtained with the product Simpson’s method for
Example 1. In this case Theorem 3 can be applied with n = 2, giving consistency
of order four. The results indicate that the convergence order is four and this is in
agreement with the theoretical prediction.

To obtain the values in Table 2, we implemented a method based on the repeated
use of the product three-eights rule as the main rule (three eight’s method) which
was applied to Example 1. Here Theorem 2 can be applied with m =n+1 =4 and
the results show the expected fourth order of convergence (cf. Remark 1).

A further method corresponding to n = 4 was also implemented and applied to
Example 1. Here y(®) (t) = constant x t-°, so that y(®)(0) = 0 and Theorem 3 can
be applied. This together with Remark 1 gives convergence of order six which is
confirmed by the numerical results in Table 3.

We have also applied Simpson’s method to Example 2 for which 3®) (t) =
const # 0. We can only conclude that the method is consistent of order three
and we would also expect to get convergence of order three. Here the numerical
results of Table 4 seem to indicate that the convergence order might be slightly
higher, maybe 3.3. We note that this is just & + u — 1. Further numerical results
for other values of p seem to support the conjecture that the order should be given
by min(a + g —1,n + 2).

In Table 5 the results obtained for Example 3 by Simpson’s method are dis-
played. In order to deal with the unbounded solution y(t) = ¢~%2 we considered
the transformed equation (3.5) with [ satisfying the conditions y — 8 > 1 and
toy(t) € C3[0,7]. As u = 5 we chose 3 = 3.6 so that the solution of the new
equation (3.5) was t%y(t) = t>*. Theorem 4 can be applied to equation (3.5) giving
third order of convergence. Based on the numerical results obtained, we conjec-
ture that, in general, the order, let us say, ¢, of a method should be given by:
g=min(a+ g —1,n+1)if nis odd; ¢ = min(a + p — 1,n + 2) if n is even.

Table 1: The Simpson’s method

Example 1: p=1.5,a=6.5
t; 0.5 1.0 2.0 rate
h =0.05 1.9D—-6 |1.1D—-5|59D -5
h =0.025 1.2D—-7 | 66D —-7|3.7D—-6| 4.0
h=0.0125 | 72D -9 (41D —-8|23D—-7| 4.0
h =0.00625 | 4.5D —10 | 256D —9 | 1.4D -8 | 4.0
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Table 2: The three-eights method

Example1: p=15,a=06.5
t; 0.5 1.0 2.0 rate
h =0.05 58D —7 | 51D —6|54D —5
h =0.025 5.6D—-8 | 6.0D—7|40D—-6| 3.7
h =0.0125 6.6D—9 | 44D -8 29D -7 | 3.8
h =0.00625 | 4.9D —10 | 32D -9 | 19D -8 | 3.9

Table 3: A method based on a five-point rule rule

385

Example1: p=15,a=06.5
t; 0.5 1.0 2.0 rate
h =0.05 38D —8 | 1.54D -7 | 24D —7
h =0.025 1.7D—-9 | 26D -9 | 4.0D—-9 | 5.9
h=0.0125 | 29D —11 45D —11|6.7D—11| 5.9
h =0.00625 | 4.9D —13 | 74D —13 | 1.1D — 13 | 6.0
Table 4: The Simpson’s method
Example 2: p=1.3,a=3.0
t; 0.5 1.0 2.0 rate
h =0.05 38D—-6|33D—-61|28D—-6
h =0.025 41D —-7|35D—-7129D —T7|3.26
h=0.0125 |43D—-8|3.6D—-8|3.0D-8]3.30
h =0.00625 | 4.5D -9 | 3.7D -9 | 3.0D —9 | 3.30
Table 5: The Simpson’s method
Example 3: p=5.0,a=-0.2,3=3.6
t; 0.5 1.0 2.0 rate
h = 0.05 41D -6 | 36D —6|3.1D—6
h =0.025 35D —-T7|30D—-7]25D—-7| 3.6
h=0.0125 | 28D -8 24D —-8|19D -8 | 3.7
h =0.00625 | 22D -9 | 18D -9 | 15D -9 | 3.7

6. Concluding remarks

A class of product integration methods based on n + 1-point interpolatory rules
has been introduced for the solution of (1.15)-(1.16). A sufficient condition for
convergence was derived which required the weights to satisfy (3.7) (cf. Theorem
6). For the trapezoidal method (n=1) it is easy to prove that this condition holds
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for all values of ¢ > 1. In general, for methods based on rules using 2, 3,4 points
we conjecture that

i—1

ZMSUM, i=nn+l,.... (6.1)
=0 1-— \w“|

Another condition for convergence was provided by Theorem 7 which required the
weights to be non-negative. This again can be easily shown to be true for the
Trapezoidal method for any u. However, for a discretization method of the type
(2.16)-(2.17) with n > 1, the sign of the weights will depend on p. The convergence
of numerical methods can be based on a combination of Theorems 6 and 7 for
adequate values of u. In the case of Simpson’s method, it was proved that the
weights were non-negative if 1 < p < 2, while a condition like (3.7) was shown to
hold if p > 2.
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