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Abstract. A method to simulate three-dimensional unsteady multi-fluid flows with
free surfaces is described. A sharp interface separates incompressible fluids of dif-
ferent density and viscosity. Surface and interface tensions are also considered and
the required curvature is approximated at the fronts by a methodology described
in [3]. The method is based on the GENSMAC [14] front-tracking method. The
velocity field is computed using a finite-difference scheme in an Eulerian grid. The
free-surface and the interfaces are represented by an unstructured Lagrangian grid.
The method was validated comparing the numerical results with analytical results
for a number of simple problems. Other more complex numerical simulations show
the robustness of the method, and some comparisons with experimental results are
also presented.

1. Introduction

Multi-phase flows are relevant to many industrial problems, such as oil, nuclear,
chemical and food industry. Additionally, surface tension effects are important
in applications involving small drops like in ink jet printing, coating, and paint
drying. In this work, it is described a numerical method to simulate multi-phase
flows, considering surface and interface tension effects. The fluids are taken to
be incompressible, but having different properties, like density and viscosity. All
phases are considered as a continuum, with variable properties according to the
position of the interface. This approach eliminates the requirement to use explicit
coupling conditions at the interface. The interface tension effects are incorporated
as a source term in the momentum equation.

The numerical method was implemented in the FREEFLOW-3D simulation en-
vironment code, which uses the GENSMAC method to solve the Navier-Stokes
equations. The method presented here is based on the GENSMAC method and the
front-tracking methodology, having moving marking particles on the surface and
the interface.
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2. Formulation and Numerical Method

The governing equations for the incompressible flows are the Navier-Stokes equa-
tions. Considering the interface tension forces on the interface and variable proper-
ties, the momentum equation is given by

∂u

∂t
+∇·(uu) = −1

ρ
∇p+

1

ρRe
∇·µ(∇u+∇uT )+

1

Fr2
g+

1

ρWe

∫

σκ′n′δβ(x−x′)ds′

where Re = ρ0LU/µ0, Fr = U/
√
Lg and We = ρ0LU

2/σ0 denotes the Reynolds
number, the Froude number and the Weber number, respectively. Here, L and U
are the length and velocity scales, ρ0, µ0 and σ0 are the reference values of density,
dynamic viscosity and surface tension constants, and g denotes the gravitational
constant. Furthermore, u denotes the velocity field, and p is the dimensionless
pressure. The interface force term in the momentum equation was proposed by
Esmaeli & Tryggvason [5, 6], where σ is the interface tension coefficient, κ is the
curvature, n is the normal vector and δβ(x−x′) is the product of β one-dimensional
δ-functions (β = 2 or 3). The primed variables are computed on the interface.

In this work an alternative form of the interface force term will be used. Let
A(t) be a region in the space limited by a surface S, that varies with time t, and
H(x, y, z, t), a Heaviside function defined by

H(x, y, z, t) =

∫

A(t)

δ(x− x′)δ(y − y′)δ(z − z′) da′.

Thus, it can be shown that

∇H = −
∫

S

δ(x− x′)δ(y − y′)δ(z − z′)n ds′

and so, the Navier-Stokes equation can be written as follows

∂u

∂t
+ ∇ · (uu) = −1

ρ
∇p+

1

ρRe
∇ · µ(∇u + ∇uT ) +

1

Fr2
g − σκ

ρWe
∇H. (2.1)

All the fluids are taken to be incompressible, so the velocity field is divergence
free, resulting in the continuity equation

∇ · u = 0. (2.2)

These equations are solved based on the GENSMAC method [14], in an extension
of the methodology described in [10] for two-dimensional case. It is supposed that
the velocity field u(x, t0) is known at a given time t0, and the boundary conditions
for the velocity and pressure are given. The updated velocity field u(x, t), at t =
t0 + ∆t is calculated using the following algorithm:

1. Let p̃(x, t) be a pressure field which satisfies the correct pressure conditions
on the free surface. This pressure field is computed according to the required
boundary stress conditions.
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2. The intermediate velocity field ũ(x, t) is computed by the explicitly discretized
form of

∂ũ

∂t
+ ∇ · (uu) = −1

ρ
∇p̃+

1

ρRe
∇ · µ(∇u + ∇uT ) +

1

Fr2
g − σκ

ρWe
∇H (2.3)

with ũ(x, t0) = u(x, t0) using the correct boundary conditions for u(x, t0).
It can be shown in [14] that ũ(x, t) possesses the correct vorticity at time t.
However, ũ(x, t) does not satisfy equation (2.2). Let

u(x, t) = ũ(x, t) − 1

ρ
∇ψ(x, t) (2.4)

with

∇ · 1

ρ
∇ψ(x, t) = ∇ · ũ(x, t). (2.5)

Thus, u(x, t) now satisfies equation (2.2) and the vorticity remains unchanged.
Therefore, u(x, t) is identified as the updated velocity field at time t.

3. Solve the elliptic equation (2.5).

4. Compute the velocity by equation (2.4).

5. Compute the pressure using

p(x, t) = p̃(x, t) +
ψ(x, t)

∆t
.

6. Update the positions of the marker particles.

The last step in the calculation involves moving the marker particles to their
new positions. These are virtual particles whose coordinates are stored and updated
at the end of each cycle by solving dx/dt = u by Euler’s method. This provides
the new coordinates of every particle, allowing us to determine whether or not it
moved to a new computational cell or if it left the containment region through an
outlet. Using the front-tracking methodology [15], only marker particles on the free
surface and the interface need to be considered.

For the solution of (2.3), appropriate boundary conditions are applied. At solid
walls null velocities are enforced. At the free surface, the boundary conditions for
pressure and velocity, assuming zero viscous stress in the empty phase, are given by

(T · n) · n = pcap, (T · n) · m1 = 0, (T · n) · m2 = 0, (2.6)

where n, m1 and m2 are the local normal and tangential vectors to the free sur-
face. T is the viscous stress tensor and pcap = σκ/We is the capillary pressure,
originating from the effects of surface tension σ. Here We = ρLU2/σ is the We-
ber number, and κ is the non-dimensional curvature. The elliptic equation (2.5)
is solved satisfying Dirichlet boundary conditions at the free surface and Neumann
at the solid boundaries, using the conjugated gradient method. However, as the
density variation across the interface is increased, more iterations are required for
the convergence of the method. In these cases, we used a diagonal preconditioner
to speed-up the convergence of the gradient conjugated method.



206 Sousa and Mangiavacchi

3. Discretization

Similarly to MAC [16], SMAC [1] and GENSMAC [14] methods, the eqs. (2.3)–
(2.5) are discretized by finite differences in a staggered grid. However, in this
method, the fluid domain is tracked using particles only in the free surface and in
the interfaces. Additionally, the nonlinear terms in the momentum equation are
discretized using the high order upwind scheme VONOS [7]. Using the tracking
particles, the free surface and the interface is approximated by a piecewise linear
surface and represented by the “half-edge” data structure.

The flow properties are represented in a three-dimensional uniform grid, in which
every cell, at each time step, is classified according to its position relative to the
fluids and the rigid boundaries (eg. containers, inflow boundaries). Cells with more
than half of their volume in a container are classified as BOUNDARY (B) cells; the
same criteria is used for the INFLOW (I) cells. Any cell completely inside the fluid
is classified as FULL (F) cell, those completely outside the fluid are EMPTY (E)
cells and those on the free surface are SURFACE (S) cells. This criteria is applied
to each fluid in the simulation, and the interface cells are identified as the cells that
are SURFACE (S) for more than one fluid at the same time.

In the computation of the free surface boundary conditions, given by eq. (2.6)
in each S cell, we need to have approximations for the surface normals. These
are usually obtained according to the classification of the neighboring cells. For
example: nC = (±1, 0, 0), nC = (0,±1, 0) or nC = (0, 0,±1) if only one neighbor

is an E cell; nC = (±
√

2
2 ,±

√
2

2 , 0) if there are two neighbor E cells in the x and y

directions, and; nC = (±
√

3
3 ,±

√
3

3 ,±
√

3
3 ) if there are three neighbor E cells in the x,

y and z directions. For the implementation of the surface tension effects it is also
necessary to estimate the surface curvature at the center of each surface cell, and
to take into account sub-cell surface tension effects. These implementations were
made and described in [11, 12].

The interface tension effects are given by the discretization of (σκ′/ρWe)∇H
in the faces of the interface cells if the corresponding neighboring cell is FULL for
some phase. Half of the interface force is applied in these faces, and so, the interface
is at most one cell thick. When the interface tension term is discretized, the forces
to be applied in each direction result to be

Fx = ± 1

∆x

σκ′

ρi+ 1

2
,j,kWe

, Fy = ± 1

∆y

σκ′

ρi,j+ 1

2
,kWe

, Fz = ± 1

∆z

σκ′

ρi,j,k+ 1

2

We
.

The sign of the forces is chosen according to the interface normal used in the com-
putation of the curvature.

4. Validation and Numerical Results

A number of tests were performed to validate the code and to assess its robustness
and precision. In this section some representative results are presented. In the
following subsections, the numerical results are compared with analytical solutions
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in the case of spherical drops and the oscillation of elliptical drops. Additionally,
results of bubble rising in a continuous phase and bubble coalescence are presented.

4.1. Capillary Pressure of Spherical Drops

To validate the computation of the interface tension and capillary pressure, spherical
drops immersed in a continuous phase were simulated using different grids. The
densities of the fluids are ρd = 1 g/cm3 for the drop and ρf = 0.5 g/cm3 for the
continuous phase. The interface tension coefficient is σ = 23.61 dyn/cm, and the
radius of the drop is R = 2 cm. Figure 1 shows the pressure jump at the interface,
in the plane y = 3 cm. In the absence of viscous, gravitational, or external forces,
surface or interface tension causes a static liquid drop to become spherical. The
Young-Laplace [2] equation of capillarity is given by

∆p = σκ = σ

(

1

R1
+

1

R2

)

,

where R1 and R2 are the radii of the two perpendicular maximum circles of the
sphere. In this case, the analytical pressure jump at the interface, from the Young-
Laplace equation, is ∆p = 23.61 dyn/cm3.

The numerical simulations are performed in five different uniform grids, with
20, 30, 40 50 and 60 cells in each direction. Figure 2 shows the numerical capillary
pressure converging to the analytical value given by the Young-Laplace equation
(left), and the quadratic decay of the error (right).

These numerical results are very accurate, according to the theoretical formula-
tion, with error in euclidian norm smaller than 1.2% for the coarsest grid, reducing
to about 0.2% when the grid is refined. The convergence of the method for interface
tension calculation is quadratic, as can be seen in Figure 2 (right).
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Figure 1: Capillary pressure of a spherical drop in a 60× 60× 60 grid, at y = 3 cm.
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Figure 2: Numerical capillary pressure converging to analytical capillary pressure
(left) and the error decay comparing with a quadratic curve (right), in a log scale
graph.

4.2. Oscillation of a Drop

This problem consists in simulate an elliptic drop immerse in a continuous phase,
without gravity field. The drop has a small initial perturbation with respect to its
equilibrium spherical form and, driven by the interface forces, it tends to oscillate.
The non-dimensional parameters chosen for the simulation are σ = 10, ρd = 100 and
µd = 0.35 for the drop and ρf = 1 and µf = 0.001 for the surrounding fluid. The
bubble initial diameter is 1 and the initial amplitude of the perturbation corresponds
to 2.5% of its radius. The calculations are made in a 40× 40× 40 grid. The results
obtained were compared with analytical solutions [15, 5, 6], as can be seen in Figure
3. The analytical expression for the frequency is given by

ω2 =
24σ

(3ρd + 2ρf )R3
.
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Figure 3: Oscillation of the bubble diameter in function of the non-dimensional
time. The error found is about 12% for the period, using the euclidian norm.
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Assuming the viscous effects to be small, the amplitude would decay as a(t) =
a0e

−t/τ , where τ = R/5ν, if the effect of surrounding fluid is neglected.

It can be seen that the numerical results are in good agreement with the analyt-
ical expression for the bubble diameter. Using the extreme points to estimate the
period of oscillation, we found the discrepancy between the numerical and analytical
value for the period is about 12%.

4.3. Bubble Rising in a Continuous Phase

Rising bubbles are classical examples to validate multi-phase flows simulations.
Bubbles with lower density than the surrounding fluid tend to rise, due to the
hydrostatic effects that increase the pressure towards the bottom of the domain.
This problem was simulated with 16 × 16 × 32 and 32 × 32 × 64 grid cells, pro-
ducing very good results. The bubble diameter is D = 2.6 mm, the velocity is
nondimensionalized by U =

√
gD = 0.15 m/s, the interface tension coefficient is

σ = 0.03 N/m. For the continuous phase, ρf = 880 kg/m3, µf = 0.0125Ns/m2,
and for the drop, ρd = 88 kg/m3, µd = 0.00125 Ns/m2. The dimensionless con-
stants Re = ρfDU/µf = 30 and Eo = ρfgD

2/σ = 2 are the Reynolds and Eötvos

Figure 4: Single bubble rising in a continuous phase, for t = 0.015 s, t = 0.030 s,
t = 0.045 s, t = 0.06 s and t = 0.075 s. Here, Re = 30 and Eo = 2.
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Figure 5: Reynolds number of the bubble in function of the non-dimensional time,
in two different resolutions, 16 × 16 × 32 and 32 × 32 × 64.
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numbers respectively. Three-dimensional rendering of the transient solution can
be seen in Figure 4. Figure 5 shows the time evolution of the Reynolds number
Reb = UbD/ν, based on the bubble rising velocity Ub, using the two different grids.
These results were compared with results obtained by Esmaelli & Tryggvason (1999)
[6], with good agreement.

4.4. Bubble Coalescence

Another classical example of multi-phase flows is to simulate bubble coalescence in
a continuous phase. This problem was simulated with good results, as can be seen
below. The bubbles diameter is D = 2.6 mm, the velocity is nondimensionalized
by U =

√
gD = 0.15 m/s, the interface tension coefficient is σ = 5.8 × 10−4 N/m,

and the dimensionless constants Re = 30 and Eo = 100 are the Reynolds and
Eötvos numbers, respectively. For the continuous phase, ρf = 880 kg/m3, µf =
0.0125Ns/m2, and for the drops, ρd = 440 kg/m3, µd = 0.00625Ns/m2. Figure
6 shows the transient solution of the interface, with the coalescence of both drops,
starting from the drops initialy in-line.

Figure 6: Transient solution of the bubble coalescence in a continuous phase, with
in-line bubbles, for t = 0.0 s, t = 0.03 s, t = 0.06 s, t = 0.09 s, t = 0.12 s and
t = 0.15 s.

Figure 7: Transient solution of the bubble coalescence in a continuous phase, the
bubbles are not in-line, for t = 0.0 s, t = 0.03 s, t = 0.06 s, t = 0.09 s, t = 0.12 s
and t = 0.15 s.
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The same flow parameters were utilized to simulate the rise of two bubbles that
are initially disaligned. Figure 7 shows the 3D rendering of the transient solution,
in which the bottom bubble seeks the top bubble until the coalescence, due the
lower pressure field at the bottom of the top bubble. These results are in very good
agreement when compared with the numerical results obtained by Li Chen & Yuguo
Li (1998) in [4] and the experimental results by Narayanan et. al. (1974) in [9].

5. Conclusions

In this work, it was described a method to simulate multi-phase flows with surface
tension, where the fluids are taken to be incompressible. This method was based
on the GENSMAC method [14], using finite difference scheme to discretize the gov-
erning equations, as was done in [10]. Surface and interface tensions are considered,
and the required curvature on the interface is computed by a technique of surface
approximation [3, 8, 11, 12]. The numerical results are in very good agreement with
known analytical solutions of simple problems, like equilibrium bubble and the os-
cillation of a drop. Other numerical results show the robustness of the code, like
rising drops and bubble coalescence. These results are compared with numerical
results obtained in [4, 5, 6], showing very good agreement.

Resumo. Neste trabalho é apresentado um método para simular escoamentos
multifásicos transientes com superf́ıcies livres, onde uma interface separa fluidos
imcompresśıveis de diferentes densidades e viscosidades. Os efeitos de tensão su-
perficial e interfacial também são considerados, onde o cálculo da curvatura é apro-
ximado nas interfaces e na superf́ıcie livre por uma metodologia descrita em [3].
O método é baseado no método de front-tracking GENSMAC [14], onde o campo
de velocidades é calculado utilizando-se um esquema de diferenças finitas em uma
malha Euleriana. A superf́ıcie livre e as interfaces são representadas por uma malha
Lagrangeana não-estruturada. O método foi validado comparando-se os resultados
numéricos com soluções anaĺıticas de problemas conhecidos. Outras simulações
mais complexas mostram a robustez do método, sendo estes comparados com al-
guns resultados experimentais de outros artigos.
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