
Tendências em Matemática Aplicada e Computacional, 3, No. 1 (2002), 91-100.

c© Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional.
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Abstract. This paper aims at presenting the Diffusional Method coupled with the

Finite Volume scheme as an alternative approach for solving convection-diffusion

equations, which under high Peclet numbers may configure a hard numerical task.

It is also intended to test the proposed methodology for a case where analytical

solution is known and for another one characterized by a high gradient profile. For

the last case, results show that false diffusion effects are present. Comparisons of

the Diffusional Method with other numerical schemes are also presented.

1. Introduction

The problem of solving convection-diffusion equations is well established in the
literature [5, 8, 9]. The convection-diffusion equations are obtained in several engi-
neering systems and also in some economic problems which can be represented by
means of stochastic differential equations.

It is also well known the difficulties found in solving this kind of equations under
high Peclet numbers, or under high gradient flow problems. Numerical errors arising
from predominant convective problems by means of the Finite Volume Method
(FVM), the Finite Difference Method (FDM) or the Finite Element Method (FEM)
have been called false dispersion or false diffusion [4].

Recently, a new alternative method, named the Diffusional Method, was pre-
sented [3] to solve the convection-diffusion equation.

FORTES and FERREIRA [1] presented the Diffusional Method with FVM for
one dimensional problems. This paper aims at presenting the Diffusional Method
together with the FVM to solve two dimensional problems under various Peclet
numbers.

2. The diffusional two-dimensional method

The model equation employed in this study is the convection-diffusion equation in
an incompressible flow field. In two dimensions, the transient convection-diffusion
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equation (CDE) can be written in the non-conservative form as
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where φ denotes the dependent variable, Γx and Γy are the diffusion coefficients
in the x-direction and y-direction, respectively, Q is the source term, u and v are
the velocity components in the x-direction and y-direction, respectively, t is time.
Values of Q, u, v, Γx and Γy may depend on φ, t, x and y. A new methodology
for solving equation (2.1) has been proposed [3] which is natural and independent
of the numerical scheme.

Based on the just cited author, let us accept and use the obvious fact that linear
and non-linear Diffusion Problems (elliptic and parabolic problems) can, in general,
and in the absence of strong non-linearities, be accurately solved by means of any
of the classical numerical methods, that is, Finite Differences, Finite Elements and
Finite Volumes. For this purpose, let us transform equation (2.1) into a diffusion
equation. Let

u
∂φ

∂x
−

∂

∂x

(

Γx

∂φ

∂x

)

= Ax

∂

∂x

(

ΓxBx

∂φ

∂x

)

, and (2.2)

v
∂φ

∂y
−

∂

∂y

(

Γy

∂φ

∂y

)

= Ay

∂

∂y

(

ΓyBy

∂φ

∂y

)

, so that, (2.3)

AxΓx

∂Bx

∂x
= u; AxBx = −1 ⇒ Bx = B0(y)e−

∫

x

0

u
Γx

dx, and (2.4)

AyΓy

∂By

∂y
= v; AyBy = −1 ⇒ By = B1(y)e

−

∫

y

0

v
Γy

dy
, (2.5)

where B0(y), B1(x), Γx and Γy are constants.
In this notation, the diffusional formulation of (2.1) is
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The substitution of equations (2.4) and (2.5) into equation (2.6) leads to
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and rearranging one arrives to the general two-dimensional diffusional form of the
CDE
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If one assumes u/Γx and v/Γy to be constant or an average within the integra-
tion range, then the above equation can be written in terms of the global Peclet
numbers in both directions, Px = uLx/2Γx and Py = vLy/2Γy as the simplified
two-dimensional diffusional form of the CDE
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where Lx and Ly are the characteristic lengths in x- and y-direction, respectively.

The above equations (2.8) and (2.9) are in an excellent form, well suited to
be solved by any numerical technique, and more particularly, by the finite volume
method. Worthy to note is the equivalence of finite element, volume and difference
methods used to solve one dimensional convection diffusion problems [2].

3. The finite volume diffusional method for the

two-dimensional convection-diffusion equation

Consider the two-dimensional control volume shown in Figure 1. The key step of the
finite volume method is the integration of equation (2.9) over the control volume [8],
which is done by writing equation (2.9) in terms of local Peclet numbers, Pex and
Pey. For simplicity, the standard Finite Volume notation δxwe is denoted by hx

and δxsn is denoted by hy.

Figure 1: Two-dimensional control volume.
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The two-dimensional steady state diffusional scheme takes the form
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Using centred difference and assuming an uniform grid spacing in both directions,
the integration leads to
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that can be rearranged as

− 2PexΓx

hx
2

[(

eP ex

eP ex
−e−P ex

)

ΦW − (coth Pex)ΦP +
(

e−P ex

eP ex
−e−P ex

)

ΦE

]

−
2PeyΓy

hy
2

[(

eP ey

eP ey
−e−P ey

)

ΦS − (coth Pey)ΦP +
(

e−P ey

eP ey
−e−P ey

)

ΦN

]

+ Q = 0.

(3.3)
Substituting αx and αy defined as
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1
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1
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in equation (3.3) to give after algebraic manipulations
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The above equation is the discretised equation for node P. For eventual comparisons,
equation (3.5) can be represented by the following form:
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In an unsteady-flow , the discretization equation is derived by integrating equa-
tion (2.9) over the control volume and over the time interval from t to t+∆t. Thus,
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If the dependent variable at the node is assumed to prevail over the whole control
volume, integration of transient term can be written as
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where indices n and n + 1 refer to time levels.
Spatial integration of the other terms of equation (3.11) is given by equa-

tions (3.2) and (3.3). The time integration can be evaluated using the mean value
theorem. Making the same simplification done between equation (3.2) and equa-
tion (3.3), for the transient term given by equation (3.12), the result of the integra-
tion of equation (3.11) can be written as
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where 0 ≤ θ ≤ 1, for which there are some popular choices: θ = 0, θ = 1/2 and
θ = 1, associated with the explicit, Crank Nicholson and fully implicit scheme,
respectively.
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If use is made of the terminology defined above for steady-state terms such as as,
bs, cs, fs and gs, a new analogous transient coefficient is defined (with the subscript
t) and denoted bt. Then, regardless of which value is specified for θ, equation (3.14)
can be rewritten in the form:
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with the coefficients as and fs, bs, cs and gs given by equations (3.7) to (3.9),
respectively and
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4. Example problems

4.1. Analytical Study

The problem solved in this section was proposed by SHEU et al. [7]. This problem
was chosen to evaluate the described algorithm under conditions that lead to known
analytical results. The problem consists in solving equation (2.1), where holds
0 ≤ x ≤ 1; 0 ≤ y ≤ 1; Γx = Γy = Γ; and the following boundary conditions:

x = 1 ⇒ Φ = 0,

y = 1 ⇒ Φ = 0,

x = 0 ⇒ Φ =
1 − e(x−1) u

Γ

1 − e−
u
Γ

,

y = 0 ⇒ Φ =
1 − e(y−1) v

Γ

1 − e−
v
Γ

. (4.1)

Here, the transport problem is uncoupled with the flow problem since the ve-
locities u and v are assumed prescribed and constant all over the domain.

The problem consists in solving boundary value problem (2.1) and (4.1) under
the diffusional scheme, previously described.

First, the L2 error norms [6] were computed with different diffusive coefficients
Γ, ranging from 1 to 10−5. Equally spaced grids ranging from 11 to 41 nodes in each
direction were also used, for the particular case where u and v equals unity. Results
obtained for the L2 norm under explicit formulation for the Diffusional scheme
and those obtained by SHEU [7] for the characteristic Galerkin finite-element and
Legendre-polynomial finite-element are summarised at Table 1.

Comparisons of the above results allow saying that the Diffusional scheme offered
better results than the Legendre polynomial scheme, particularly for more diffusive
problems. It is also clear that the presented formulation leads to inferior L2 norm
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h Γ = 1 Γ = 0.1
Diffusional Legendre Diffusional Legendre

0.1 9.153E-11 1.175E-09 8.434E-16 1.217E-09
0.05 1.202E-12 1.095E-09 4.945E-16 1.156E-09
0.025 1.449E-14 1.073E-09 7.055E-18 1.112E-09

h Γ = 0.01
Diffusional Legendre Galerkin

0.1 8.182E-17 4.407E-06 1.125E-01
0.05 7.991E-17 5.885E-08 7.616E-02
0.025 5.866E-18 2.865E-10 5.483E-02

h Γ = 0.001 Γ = 0.0001
Diffusional Galerkin Diffusional Galerkin

0.1 8.316E-18 1.508E-02 1.284E-26 1.575E-04
0.05 4.206E-17 2.184E-03 4.432E-18 2.569E-07
0.025 4.132E-5 1.455E-04 8.259E-19 2.966E-12

Table 1: Compilation of results for Diffusional Method, Legendre Polynomials and
Characteristic Galerkin.

errors than the characteristic Galerkin for predominantly convective problems. So,
no matter what Peclet numbers we shall work with, the presented methodology
showed better accuracy than those methods studied by the cited authors.

It is also important to say that, when diffusive coefficients are smaller than 10−3,
the increasing error with refining the meshes can be explained by the truncation
errors. Despite this behaviour, the L2 errors under this conditions are extremely
small.

The profiles of ϕ for y = 0.5 are examined at Figure 2, for the case where
Γ = 10−5. As expected, the numerical solution converges to the analytic profile as
the meshes are refined.

4.2. Skew Convection Problem

The second test problem was also proposed by SHEU et al. [7]. Here, we investigate
the effectiveness of diffusional scheme under high gradient solution profile in the
flow. The boundary conditions for this problem are summarised at Figure 3.

The profile of the dependent variable for Γ = 10−5, u = v = 1 and y = 0.5 for
various meshes are plotted in Figure 4. False diffusion effects are representative for
the fine mesh of 160 spacing grids in each direction, as used by SHEU et al. [7], which
under the Characteristic Galerkin Scheme, offered better results than the proposed
scheme. For this last one, further meshes refinements are so justified. Comparisons
between the profile under 320× 320 and 640× 640 spacing grids indicate that more
refinements are necessary, since solution field has not converged.
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Figure 2: Computed solution at y = 0.5 for the analytical test, for the case of
Γ = 10−5.

Figure 3: Illustration of the skew-convection diffusion problem.

The response is also plotted in Figure 5 for the case with u = 0.5, v = 1 and
Γ = 10−5. Here, as in the last case, false diffusion effects are present even for
extremely refined mesh.
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Figure 4: Profile of the dependent variable for Γ = 10−5, y = 0.5 and v, u = 1.

Figure 5: Profile of the dependent variable for Γ = 10−5, y = 0.5, u = 0.5, v = 1.



100 Cunha and Ferreira

5. Conclusions

The two-dimensional Diffusional method was presented to solve transport equations
together with the FEM, FVM, FDM. Particularly, at the presented study, we used
the diffusional method under the Finite Volume formulation.

An analytical test problem was solved by the proposed method together with the
Finite Volume scheme and its performance, measured by the L2 norm, was superior
when compared to characteristic Galerkin finite-element method and also Legendre-
polynomials finite-element method. In all Peclet range simulated, the diffusional
method achieved superior accuracy.

A skew advection problem was also solved, and relevant false diffusion behaviour
was observed. Fine meshes refinements upon to 640× 640 spacing grids were made
but false diffusion effects were still present, even though consistence prevailed. In
this problem, the method presented worse results than the Characteristic Galerkin.
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