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Computacional, Departamento de Informática e Matemática Aplicada, Universi-
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Abstract. In this work we propose a generalized real interval arithmetic. Since
the real interval arithmetic is constructed from the real arithmetic, it is reasonable
to extend it to intervals on any domain which has some algebraic structure, such
as field, ring or group structure. This extension is based on the local equality
theory of Santiago [11, 12] and on an interval constructor which mappes bistrongly
consistently complete dcpos into bifinitely consistently complete dcpos.

1. Introduction

R. Moore [10] developed an interval mathematic in order to proporcionate the con-
trol of errors in numeric computations in the solution of problems concerning real
numbers. Nevertheless, the real interval arithmetic of Moore is not completely faith-
ful with the real arithmetic, in the sense that the algebraic structure of the interval
arithmetic is not a field.

Several works have been developed to overcome the algebraic incompatibility
between the set of intervals and the set of real numbers [8]. In [11] was observed
that the problem does not come from the algebraic structure of intervals but from
the adopted primitive notion of equality for intervals. Thus, Santiago proposed a
new notion of equality for intervals, called local equality, and states some of the
consequences of such approach on intervals, like the possible simulation of a field
structure on intervals. He presented a domain theoretic approach for intervals and
Scott’s simple equality; he restricted the last to local equality and showed that
intervals can be used like real numbers.

The Moore theory not only comprehend real intervals, but also complex inter-
vals, matrix and array of real and complex numbers. Actually, several program-
ming languages have been developed using this interval data type as primitive, this
class of programming languages are denominated XSC (eXtension for Scientific
Computation) [7, 15]. It is reasonable to hope that in the future will be developed
XSC languages with a parametric data type. Thus, in order to provide a theoretical
foundation to this class of programming languages, it is necessary to generalize the
interval theory in such a way that include the above kind of intervals and any other
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possible type of intervals, i.e. that consider the parametric data type. It means that
we have to see intervals as a constructor. Since real intervals are defined through
a partial order on the real set, we might define intervals on any partially order set.
In [6] was associated to every poset their set of intervals. The work of [5] uses the
set of intervals of a poset with a coherent relation as primitive object (a web) of a
coherent space. Thus, they do not use it as a categorical interval constructor on
the poset category. In [2, 3, 4] this construction was worked out from a categorical
sight: it was treated as a categorical constructor. In this sense were studied some
categories of domains which are closed under this constructor and where the pro-
jection functions l : I(D) −→ D and r : I(D) −→ D defined by l([a, b]) = a and
r([a, b]) = b, respectively, are morphisms of these categories.

In this work, we propose a generalized real interval arithmetic based on this
interval constructor and the local equality theory of Santiago [11, 12]. We show how
to extend the interval arithmetic (on the real numbers) to other domains obtained
via this interval constructor.

2. Partial Ordered Sets

Let P be a set. A binary relation ≤ on P is said a partial order on P if for each
x, y, z ∈ P the following conditions are satisfied:

Reflexivity: x ≤ x;

Antisymmetry: if x ≤ y and y ≤ x then x = y;

Transitity if x ≤ y and y ≤ z then x ≤ z.

A set P with a partial order ≤ on P is said a partial ordered set or simplely
a poset.

Let D = 〈D,≤〉 be a poset. A non empty set ∆ ⊆ D is called directed if
∀a, b ∈ ∆ ∃c ∈ ∆ such that a ≤ c and b ≤ c. A poset D is directed complete (dcpo
for short) if each directed set ∆ has a least upper bound or supremum (denoted by⊔

∆) and a cpo if in addition it has a least element.
Let D and E be dcpo’s. A function f : E −→ D is called continuous w.r.t. the

orders or simplely continuous if it is monotonic (x ≤ y implies f(x) ≤ f(y)) and
preserves least upper bounds of directed sets (f(

⊔
∆) =

⊔
f(∆)).

3. The Interval Constructor

Scott in [13] defined an information order on I(R) = {[r, s] / r, s ∈ R and r ≤ s} :

[a, b] v [c, d] ⇔ a ≤ c ≤ d ≤ b

Posteriously, Acióly in [1], used this order as a base to develop a computational
foundation to the Moore Interval Theory.
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Notice that both the real intervals and the order on the set of real intervals
depends upon the usual real order. Thus, we can generalize this constructions by
considering, instead of the real set with its usual order, any partially ordered set, it
means that we can think of intervals as a constructor on the category POSET.

Definition 1. Let D = 〈D,≤〉 be a poset. The poset I(D) = 〈I(D),v〉, where

• I(D) = {[a, b] / a, b ∈ D and a ≤ b}

• [a, b] v [c, d] ⇔ a ≤ c and d ≤ b

is called the poset of intervals of D.

There are two natural functions from I(D) to D, which are the left and right
projections l : I(D) −→ D and r : I(D) −→ D respectively, defined by

l([a, b]) = a and r([a, b]) = b

Clearly the function l is monotonic and therefore it is a morphism from the
poset I(D) to the poset D, but the function r is not monotonic. But this could be
overcome by reverting the order on D.

Definition 2. Let D = 〈D,≤〉 be a poset. The reverse poset of D, denoted by
Dop, is the pair Dop = 〈Dop,≤op〉, where Dop = D and x ≤op y if y ≤ x.

Clearly every poset D has a reverse poset and the function r : I(D) −→ Dop is
monotonic.

Notice that not every reverse poset of a dcpo is a dcpo. This motivate the
following definition:

Definition 3. Let D = 〈D,≤〉 be a dcpo. D is called reversable if Dop is a dcpo.

Proposition 1. Let D = 〈D,≤〉 be a reversable dcpo. Then I(D) = 〈I(D),v〉 is
a reversable dcpo and the projections l : I(D) −→ D and r : I(D) −→ Dop are
continuous.

Proposition 2. Let D1 = 〈D1,≤1〉 and D2 = 〈D2,≤2〉 be reversable dcpos. Then
D1 ×D2 is a reversable dcpo and I(D1 ×D2) ∼= I(D1)× I(D2).

Proposition 3. Let D1 = 〈D1,≤1〉 and D2 = 〈D2,≤2〉 be reversable dcpos. Let
f, g : D1 −→ D2 be continuous functions such that f v g (i.e., f(x) ≤2 g(x) for each
x ∈ D1). Then the function F : I(D1) −→ I(D2) defined by F ([a, b]) = [f(a), g(b)]
is the unique continuous function which makes the following diagrams:
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D1
f - D2

I(D1)

l

6

F - I(D2)

l

6

D1

r

? g - D2

r

?

commutative.

The above proposition generalizes the notion of interval extension of a real func-
tion.

Definition 4. A dcpo D = 〈D,≤〉 is consistently complete if for each S ⊆ D
non empty such that S has an upper bound then it has a supreme

⊔
S in D. If D

and Dop are consistently complete dcpos then D is said biconsistently complete.

Proposition 4. Let D = 〈D,≤〉 be a biconsistently complete dcpo. Then I(D) is
biconsistently complete dcpo.

Definition 5. A consistently complete dcpo D = 〈D,≤〉 is strongly consistently
complete if each S ⊆ D finite and non empty has an upper bound. If D and Dop

are strongly consistently complete dcpos then D is said bistrongly consistently
complete

The interval constructor I is not closed on bistrongly consistently complete dc-
pos. But, we have

Corollary 1. Let D = 〈D,≤〉 be a bistrongly consistently complete dcpo. Then
I(D) is biconsistently complete dcpo.
Proof: Since each bistrongly consistently complete dcpo is a biconsistently com-
plete dcpo, the corollary is straightforward from proposition 4. ¥

4. Local Equality

Let A be a set and {0, 1} the standard boolean set. The standard equality relation
“=” on A is modeled by the boolean function [[. = .]] : A × A → {0, 1}, where the
following axioms are satisfied:

1. x = x (reflexivity);
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2. x = y ⇒ y = x (symmetry);

3. x = y ∧ y = z ⇒ x = z (transitivity).

In [14], Scott proposed an alternative axiomatization for equality aiming to
capture partial defined objects. This axiomatization replaces the axiom of reflexivity
for

(refl) x = x ⇔ Ex (4.1)

This axiom is based on the fact that when we are dealing with partial defined
objects the law of reflexivity does not make sense in a formalized theory. For
example, 1

a = 1
a does not make sense in all rings. This axiom reads off “if we

can say that x is equal to itself, then we can say that it exists and if x exists then
we can say that it is equal to itself” — e.g. 1

a = 1
a ⇔ E 1

a . The standard theory of
equality is derived from this one [14].

Santiago extended Scott’s simple equality in such a way that consistency will
become a weaker equivalence relation [11].

We say that the elements a and b in a poset D = 〈D,≤〉 are consistent, denoted
by a _̂ b, if there exist an element c ∈ D such that a ≤ c and b ≤ c. Consistency
satisfies the axioms of reflexivity and refl since x _̂ x, and the axiom of symmetry
since x _̂ y ⇒ y _̂ x. However, it does not satisfies the axiom of transitivity. To
overcome this situation, we define a precondition for the transitivity axiom, giving
rise to the theory of local equality.

Definition 6 (Theory of Local Equality). The axioms for local equality are:

1. x
Loc= x ⇔ Ex (refl);

2. x
Loc= y ⇒ y

Loc= x (symmetry);

3. E(x ∨ z) ⇒ (x Loc= y ∧ y
Loc= z → x

Loc= z). (Local transitivity).

So, in this theory we restrict the application of transitivity of Scott’s simple
equality.

Notice that if Loc= is a local equality on a set S and x = y for some x, y ∈ S,
then, by property (refl) (x and y are the same elements!!), x

Loc= y.

5. Ordered Local Algebras

It is possible to generalize the notion of classical algebraic structures, such as group,
ring and field considering a local equality instead of the usual equality.

Definition 7. Let Loc= be a local equality on the set D and two binary operations,
+ and ∗ on D. Consider the following statements:
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1. a + (b + c) Loc= (a + b) + c for each a, b, c ∈ D;

2. There exist an unique element 0 ∈ D such that for each a ∈ D,
a + 0 Loc= a

Loc= 0 + a;

3. For each a ∈ D, there exist an element (−a) ∈ D such that a + (−a) Loc= 0 Loc=
(−a) + a and for any b ∈ D such that a + b

Loc= 0 Loc= b + a, b
Loc= −a;

4. a + b
Loc= b + a for each a, b ∈ D;

5. a ∗ (b + c) Loc= (a ∗ b) + (a ∗ c) for each a, b, c ∈ D;

6. a ∗ (b ∗ c) Loc= (a ∗ b) ∗ c for each a, b, c ∈ D;

7. There exist an unique element 1 ∈ D such that for each a ∈ D,
a ∗ 1 Loc= a

Loc= 1 ∗ a;

8. a ∗ b
Loc= b ∗ a for each a, b ∈ D;

9. For each a ∈ D, a not locally equal to 0 there exist an element a−1 ∈ D such
that a ∗ a−1 Loc= 1 Loc= a−1 ∗ a and for any b ∈ D such that a ∗ b

Loc= 1 Loc= b ∗ a,
b

Loc= a−1.

The structure 〈D,
Loc= ,+〉 is a local group if it satisfies 1,2 and 3. It is a local

abelian group if it is a local group and satisfies 4. The structure 〈D,
Loc= , +, ∗〉 is a

local ring if 〈D,
Loc= , +〉 is a local abelian group and satisfies 5 and 6. It is a local

commutative ring if it is a local ring and satisfies 8. It is a local commutative
ring with unity if it is a local comutative ring and satisfies 7. It is a local field
if it satisfies all the statements.

In this definition, the unicity conditions are with respect to the local equality.

Definition 8. D = 〈D,≤,
Loc= ,+〉 is said an ordered local group (resp. or-

dered local abelian group) if

1. 〈D,≤〉 is a poset;

2. 〈D,
Loc= , +〉 is a local group (resp. local abelian group);

3. the + is motonic w.r.t. ≤, i.e. if a ≤ c and b ≤ d then a + b ≤ c + d.

Definition 9. D = 〈D,≤,
Loc= ,+, ∗〉 is said an ordered local ring (resp. com-

mutative ring, commutative ring with unity, field) if

1. 〈D,≤〉 is a poset;
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2. 〈D,
Loc= , +, ∗〉 is a local ring (resp. commutative ring, commutative ring with

unity, field);

3. the + is motonic w.r.t. ≤, i.e. if a ≤ c and b ≤ d then a + b ≤ c + d;

4. Given a ∈ D, a satisfies either:

(i) ∀x, y ∈ D, such that x ≤ y, a′ ∗ x ≤ a′ ∗ y and x ∗ a′ ≤ y ∗ a′ ∀a′ ∈ D such
that a ≤ a′

or

(ii) ∀x, y ∈ D, such that x ≤ y, a′ ∗ y ≤ a′ ∗x and y ∗ a′ ≤ x ∗ a′ ∀a′ ∈ D such
that a′ ≤ a.

If the local equality is an equality, we drop the word local from the above definitions

Lemma 1. Let D = 〈D,≤, =, +, ∗〉 be a ring such that 〈D,≤〉 is a bistrongly
consistently complete dcpo. Define on I(D) the following operations:

[a, b]⊕ [c, d] = [a + c, b + d]

[a, b]⊗ [c, d] = [ A,
⊔

A]

where A = {a ∗ c, a ∗ d, b ∗ c, b ∗ d}. Then ⊕ and ⊗ are well defined.
Proof: Since the sum in D is monotonic w.r.t ≤, we have that
∀[a, b], [c, d] ∈ I(D), [a, b]⊕ [c, d] = [a + c, b + d] ∈ I(D). Since (D,≤) is a bistrongly
consistently complete dcpo, we have that A,

⊔
A ∈ D and A ≤ ⊔

A, where
A = {a ∗ c, a ∗ d, b ∗ c, b ∗ d}. Thus, [ A,

⊔
A] ∈ I(D) ¥

Theorem 1. Let D = 〈D,≤,=, +, ∗〉 be an ordered ring (resp. commutative ring,
commutative ring with unity, field) such that 〈D,≤〉 is a bistrongly consistently
complete dcpo. Then I(D) = 〈I(D),v,

Loc= ,⊕,⊗〉; where
[a, b] Loc= [c, d] iff E([a, b] t [c, d]), is an ordered local ring (resp. commutative

ring with unity, field).
Proof: Suppose that 〈D,≤, =,+, ∗〉 is an ordered ring with (D,≤) a bistrongly
consistently complete dcpo. We must prove that 〈I(D),v,

Loc= ,⊕,⊗〉 is an ordered
local ring. It is straightforward to prove that 〈I(D),v,

Loc= ,⊕〉 is an ordered local
abelian group with 0 = [−a,a] as the identity element of I(D).

In order to prove property 5 (of Definition 7) for I(D), let [a, a′], [b, b′], [c, c′] ∈
I(D). By definition, we have that

[a, a′]⊗ ([b, b′]⊕ [c, c′]) = [ A,
⊔

A]

where A = {a ∗ b + a ∗ c, a ∗ b′ + a ∗ c′, a′ ∗ b + a′ ∗ c, a′ ∗ b′ + a′ ∗ c′}. On the other
hand, we have that
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([a, a′]⊗ [b, b′])⊕ ([a, a′]⊗ [c, c′]) = [ C + D,
⊔

C +
⊔

D]

where C = {a ∗ b, a ∗ b′, a′ ∗ b, a′ ∗ b′} and D = {a ∗ c, a ∗ c′, a′ ∗ c, a′ ∗ c′}. Notice
that, by the monotonocity of the sum in D, we have that

C + D ≤ A ≤
⊔

A ≤
⊔

C +
⊔

D.

Thus, [ C+ D,
⊔

C+
⊔

D] v [ A,
⊔

A]. Therefore, [ C+ D,
⊔

C+
⊔

D] Loc=
[ A,

⊔
A], which prove property 5.

In order to prove property 6 (of Definition 7) for I(D), let [a, a′], [b, b′], [c, c′] ∈
I(D).

By definition, we have that [b, b′] ⊗ [c, c′] = [x, y] where x = {b ∗ c, b ∗ c′, b′ ∗
c, b′ ∗ c′} and y =

⊔{b ∗ c, b ∗ c′, b′ ∗ c, b′ ∗ c′} Also,

[a, a′]⊗ ([b, b′]⊗ [c, c′]) = [ A,
⊔

A]

where A = {a∗x, a∗y, a′∗x, a′∗y}. Analogously, we have that [a, a′]⊗ [b, b′] = [z, w]
where z = {a ∗ b, a ∗ b′, a′ ∗ b, a′ ∗ b′} and y =

⊔{a ∗ b, a ∗ b′, a′ ∗ b, a′ ∗ b′} Also,

([a, a′]⊗ [b, b′])⊗ [c, c′] = [ B,
⊔

B]

where B = {z ∗ c, z ∗ c′, w ∗ c, w ∗ c′}.
Let C = {a∗b∗c, a∗b∗c′, a∗b′ ∗c, a∗b′ ∗c′, a′ ∗b∗c, a′ ∗b∗c′, a′ ∗b′ ∗c, a′ ∗b′ ∗c′}.

There are several cases we must analize. We will only prove property 6 in one
special case, the other cases been analogous. So, we suppose that a and c satisfy
property 4 (i) of Definition 9. In this case, we will prove that

A ≤ C ≤
⊔

C ≤
⊔

A.

In fact, since x = {b ∗ c, b ∗ c′, b′ ∗ c, b′ ∗ c′} we have that

a ∗ x ≤ {a ∗ b ∗ c, a ∗ b ∗ c′, a ∗ b′ ∗ c, a ∗ b′ ∗ c′}.
On the other hand, since a ≤ a′ and a satisfies property 4(i), we have that

a′ ∗ x ≤ {a′ ∗ b ∗ c, a′ ∗ b ∗ c′, a′ ∗ b′ ∗ c, a′ ∗ b′ ∗ c′}.
Therefore,

A ≤ (a ∗ x u a′ ∗ x) ≤ C.

Analogously we prove that
⊔

C ≤ ⊔
A. Since

A ≤ C ≤
⊔

C ≤
⊔

A

we have that [ A,
⊔

A] v [ C,
⊔

C]. Analogously, we can prove that [ B,
⊔

B] v
[ C,

⊔
C]. Therefore,
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[ A,
⊔

A] Loc= [ B,
⊔

B]

as we wanted. The remaining statements of the theorem are easy to prove. ¥
Notice that:

1. If [a, b] and [c, d] are degenerates intervals (i.e. a = b and c = d), then
[a, b] ⊕ [c, d] and [a, b] ⊗ [c, d] are the degenerates intervals [a + c, a + c] and
[a ∗ c, a ∗ c], respectively.

2. If x ∈ [a, b] (i.e. a ≤ x ≤ b) and y ∈ [c, d] then x + y ∈ [a, b] ⊕ [c, d] and
x ∗ y ∈ [a, b]⊗ [c, d].

3. If D = 〈R,≤, =, ∗, +〉 where ≤ is the usual order, the local equality is the
usual equality = and + and ∗ are addition and product on real numbers, then
〈I(R),⊕,⊗〉 is the Moore interval arithmetic.

6. Final Remarks

In spite that the parametric interval data type is not actually part of any program-
ming language, this work provide a theoretical foundations of the possibility to
construct programming languages which consider a parametric interval data type
as primitive in such a way that the arithmetics operators can be implemented using
polymorphism. It is clear, from this work, that the algebraic properties of this arith-
metic operators depend upon the algebraic properties of the respective operators in
the parametrized data type.

Resumo Neste trabalho propomos uma aritmética real intervalar generalizada.
Como a aritmética intervalar real é constrúıda da aritmética real, é razoável esten-
der esta para intervalos de qualquer domı́nio que tenha alguma estrutura algébrica,
tais como estruturas de corpo, anel ou grupo. Esta extensão é baseada sobre a teo-
ria da igualdade local de Santiago [11, 12] e sobre um construtor que mapeia dcpos
bifortemente consistentemente completos em dcpos bifinitamente consistentemente
completos.
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