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The Thermostat Problem

G. KALNA, S. McKEE, Department of Mathematics, University of Strathclyde,
26 Richmond Street, Glasgow G1 1XH, UK

Abstract. A paradigm model for an air-conditioning system is studied: heat flux to
and from one end of a bar is a (nonlinear) function of the temperature at the other
end. The behaviour of this model is studied through semi-discretisation in the spa-
tial variable and local linearisation. This procedure produces an autonomous sys-
tem of ordinary differential equations whose local stability may be studied through
its spectrum of eigenvalues and related back to the original problem through the
Hopf bifurcation theorem. It will be shown that the proportionality constant γ is
a bifurcation parameter which gives rise to three qualitatively different solutions:
one stable, where the temperature tends exponentially to zero; one stable that is
bounded by an envelope which tends exponentially to zero; and an unstable so-
lution that oscillates with ever increasing amplitude. An almost local problem is
also studied with similar results: the three qualitative solutions arise as before with
the bifurcation parameter decreasing as the problem becomes closer to the local
problem.

Integral equation characterisations of the nonlinear problem are developed and
existence and uniqueness are demonstrated. For the linear problem the general
analytic solution is provided and its numerical evaluation is discussed.

1. Introduction

A rod of unit length lying on the x-axis has its ends at x = 0 and x = 1. Its sides
are perfectly insulated so that no heat can enter or escape through them. At time
t = 0, the temperature of the rod is given by Φ(x), 0 ≤ x ≤ 1. For t > 0, the left
end (x = 0) of the rod is insulated, and heat is added or extracted at the right end
(x = 1) as a function of the temperature at the left end. The initial-boundary value
problem for the temperature u(x, t) in the rod is

ut = uxx, 0 < x < 1, t > 0, (1.1a)
u(x, 0) = Φ(x), 0 ≤ x ≤ 1, (1.1b)
ux(0, t) = 0, t > 0, (1.1c)
ux(1, t) = H(u(0, t)), t > 0, (1.1d)

where H is a nonlinear function such that H(0) = 0. Another boundary condition
of interest is

ux(1, t) = H(u(x∗, t)), t > 0, (1.2)
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where x∗ ∈ 〈0, 1). In the case when flux leakage is permitted at the left end the
boundary condition

ux(0, t) = β(u(0, t) + 1), t > 0 (1.3)

is considered instead of (1.1c). The special case of the linear boundary condition

ux(1, t) = −γu(0, t), t > 0, (1.4)

where γ > 0, will also be discussed. When heat loss is permitted the non-homogeneous
equation

ut = uxx − αu

will be considered instead of (1.1a).
Problem (1.1) may be interpreted as a model for a thermostat with the sensor

and controller positioned at opposite ends of an interval. Problem (1.1) with bound-
ary condition (1.2) is the more general case of the nonlinear problem; the controller
is positioned at some arbitrary point other than the heat input. Both are nonlocal
problems.

Our motivation for studying this problem comes from a paper written by Guidotti
and Merino [7], where a similar initial-boundary value problem was associated with
an abstract Cauchy problem using the general results presented by Amann [1]: in
this work the principle of linearized stability (see Drangeid [4]) was applied and
the spectrum of the associated linear operator was investigated through the Hopf
bifurcation theorem (see e.g. Guckenheimer & Holmes [6]). In a follow-up paper
Guidotti and Merino [8] studied the invariance properties of the model for a ther-
mostat. The dynamical behaviour of the solution of similar parameter-dependent
reaction-diffusion equations has also been studied by Simonett [15, 16] within a more
general setting. Problems closely related to (1.1) have been studied by Friedman
and Jiang [5] and by Brokate and Friedman [2].

To resolve questions of existence and uniqueness of a solution of an initial-
boundary value problem, a common strategy is to seek an equivalent integral (or an
integro-differential) equation reformulation. This equivalence may then be employed
to analyse the original problem. Many initial-boundary value problems involving
the heat equation can be transformed into a Volterra integral equation (see e.g.
Cannon [3]) and this strategy for studying nonlocal nonlinear problems has been
employed by several authors (see e.g. Jumarhon [9]; Jumarhon & McKee [10]; Lin
[11, 12]).

In §2 we recast problem (1.1) as a Volterra integral equation. The existence and
uniqueness of the original problem is then demonstrated through the existence and
uniqueness of the solution of the associated Volterra equation. The same Volterra
integral equation may be obtained from the application of Laplace transforms to
(1.1) and through this technique we present, in §3, another two integral relation-
ships.

Semi-discretisation of the spatial variable allows us to rewrite problem (1.1) as
an autonomous system of ordinary differential equations and in §4 we show that a
solution u = (u0, . . . , uN ) of this autonomous system tends to the solution of (1.1)
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as N tends to infinity. We can thus employ a well-known approach from ordinary
differential equations: investigate the behaviour of the solution of the nonlinear
system from the eigenvalues of associated linearisation. This results in a linear
parameter-dependent autonomous system of ordinary differential equations. The
parameter, −γ, which may be identified as ∂H(0)/∂u, plays the role of a bifurcation
parameter and determines the qualitative nature of the solution of the nonlinear
problem through the eigenvalues (as N → ∞) of the associated linear system of
ordinary differential equations.

Laplace transforms techniques allows us to write down the analytic solution of
the linearized problem (i.e. (1.1) with (1.4)) directly in terms of the sum of residues
(see §5). A study is then made of the pole positions. Three qualitatively different
solutions are found dependent upon the value of γ. In particular, if γ > 17.798542,
it is seen that the temperature of the rod will be unstable and will oscillate with
ever increasing amplitude. It is also shown that the eigenvalues of the linearized
autonomous system of the ordinary differential equations tend to the poles as N →
∞.

In §6 Laplace transform techniques are applied to the almost local linear prob-
lem. The same qualitative features are maintained although the value of γ required
to produce an unstable temperature profile increases as x∗ gets closer to x = 1. In
§7 the same approach is used to investigate the linear problem with flux leakage,
characterised by the heat transfer coefficient β. As β increases instability is still
displayed albeit with larger values of γ. Finally §8 deals with the issue of heat loss
from the bar.

2. A Volterra Integral Equation Reformulation

To deduce the existence and uniqueness of the solution of the initial-boundary
value problem (1.1) we derive an equivalent integral equation to which existence
and uniqueness theory can be applied. This integral equation approach is similar
to that used by Cannon [3]. Indeed by modifying Theorem 6.4.1 of Cannon [3] and
applying it directly to (1.1) we can deduce:

Theorem 2.1. For piecewise-continuous Φ and continuous H, the initial-boundary
value problem (1.1) has a unique solution

u(x, t) =
∫ 1

0

(θ(x− ξ, t) + θ(x + ξ, t))Φ(ξ) dξ + 2
∫ t

0

θ(x− 1, t− τ)H(u(0, τ)) dτ,

(2.1)
where θ(x, t) is defined by

θ(x, t) =
∞∑

n=−∞
K(x + 2n, t), t > 0,

if and only if u(0, t) is the unique piecewise-continuous solution of

u(0, t) = 2
(∫ 1

0

θ(ξ, t)Φ(ξ) dξ +
∫ t

0

θ(1, t− τ)H(u(0, τ)) dτ

)
. (2.2)
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Once the solution of (2.2) is known, u(x, t) can be determined using (2.1). The
following theorem is a direct consequence of checking that the conditions in Theorem
8.2.1 of Cannon [3] are satisfied.

Theorem 2.2. The Volterra integral equation (2.2) has a unique continuous solu-
tion on (0,∞).

3. The Integral Equation Reformulation

Using the Laplace transform with respect to time

ū(x, p) =
∫ ∞

0

u(x, t)e−ptdt, (3.1)

and the convolution theorem

L−1
(
L(f(t)) L(g(t))

)
= (f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ) dτ

allows the original problem to be characterised by three different, but related, in-
tegral relationships. They are: an integral relationship between u(0, t) and u(0, τ)
given by (2.2); an integral relationship between u(1, t) and u(0, τ)

u(1, t) = 2
(∫ 1

0

θ(ξ − 1, t)Φ(ξ) dξ +
∫ t

0

θ(0, t− τ)H(u(0, τ)) dτ

)
;

and an integral relationship between u(0, t) and u(1, τ)

u(0, t) =
∫ t

0

u(1, τ)√
π(t− τ)3

∞∑
n=0

(−1)n(2n + 1) exp
(
− (2n + 1)2

4(t− τ)

)
dτ

+
∫ 1

0

Φ(ξ)√
πt

∞∑
n=0

(−1)n

[
exp

(
− (2n + ξ)2

4t

)
− exp

(
− (2(n + 1)− ξ)2

4t

)]
dξ,

which may be written as

u(0, t) =
∫ t

0

u(1, τ)k(t− τ) dτ + G(t),

with obvious notation.
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4. Semi-discretisation to an Autonomous System

We use a semi-discretisation technique (see e.g. Zafarullah [18]; Smith [17]; Schiesser
[13]) to reduce the initial-boundary value problem (1.1) to an autonomous system
of ordinary differential equations

ut = A(u), (4.1)

where A is a nonlinear operator and u = (u0, . . . , uN ), where ui is an approximation
of u(xi, t) for xi = i4x, i = 0, 1, . . . , N , where 4x = 1/N . Thus for the initial-
boundary value problem (1.1) the system (4.1) takes the form

u̇0 =
1

(4x)2
(−2u0 + 2u1),

u̇1 =
1

(4x)2
(u0 − 2u1 + u2),

... (4.2)

u̇N−1 =
1

(4x)2
(uN−2 − 2uN−1 + uN ),

u̇N =
1

(4x)2
(24xH(u0) + 2uN−1 − 2uN ),

where u̇i stands for dui/dt. The equivalence of a solution of (1.1) with a solution of
(4.2) as N →∞ has already been demonstrated (see e.g. Zafarullah [18]). It allows
us to treat the original problem as the limit of the above autonomous system.

To analyze the nonlinear system (4.2) we have to determine the critical points
uc of A(u) = 0, and infer their stability from the behaviour of the linearized system

u̇ = Au

at these points. Here A is the Jacobian and takes the form

A =
1

(4x)2




−2 2
1 −2 1

. . . . . . . . .
1 −2 1

24xH ′ 2 −2




(N+1)×(N+1),

where H ′ = ∂H(uc)/∂u0. However, it is clear that the only critical point occurs
when uc = 0. Furthermore

H(u(0, t)) = H(0) +
∂H(0)

∂u
u(0, t) + O(u(0, t)2) =

∂H(0)
∂u

u(0, t) + O(u(0, t)2),

and hence we may identify ∂H(0)/∂u as −γ. Thus, in order to understand the
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stability of problem (1.1), we need to study the spectrum of the following parameter-
dependent matrix

A(γ) =
1

(4x)2




−2 2
1 −2 1

. . . . . . . . .
1 −2 1

−24xγ 2 −2




(N+1)×(N+1).

(4.3)

Generally, if the matrix (4.3) has all of its eigenvalues in the open left-half plane,
Reλ < 0, it follows that uc = 0 is asymptotically stable. If there exists an eigenvalue
λ such that Reλ > 0 then the critical point uc = 0 is unstable. If a pair of
conjugate purely imaginary eigenvalues occurs and all the remaining eigenvalues
satisfy Reλ < 0 then the Hopf bifurcation theorem can be employed to deduce the
qualitative behaviour of the associated nonlinear problem (1.1).

It is straightforward to show that the N + 1 eigenvalues and eigenvectors are

λk = 2N2(cos ϕk − 1), vjk = v0 cos jϕk j = 0, 1, . . . , N,

where ϕk are the N + 1 roots of

N sin ϕ sin Nϕ = γ.

5. Application of the Laplace Transform Method

Up to this point we have been dealing mainly with the nonlinear problem (1.1). In
the previous section we have argued that we can replace H(u(0, t)) by the parameter
−γ and thereby study a linear parameter-dependent problem. In this section the
model with the linear nonlocal boundary condition (1.4) (in place of (1.1d)) will
be considered. Laplace transforms combined with Cauchy’s theorem allows us to
write down the analytic solution as a sum of residues. The poles associated with
the residues will be determined and it can be shown that

only a finite, indeed quite a small number need to be considered in order to
compute a reasonably accurate numerical solution.

On applying the Laplace transform (3.1) to the partial differential equation
(1.1a) and the boundary conditions (1.1c) and (1.4) we obtain

ūxx − pū = −Φ(x), (5.1a)
ūx(0, p) = 0, (5.1b)
ūx(1, p) = −γū(0, p). (5.1c)

On solving we obtain

ū(x, p) =
cosh(

√
px)√

p sinh
√

p + γ

∫ 1

0

Φ(ξ) cosh(
√

p(1−ξ)) dξ− 1√
p

∫ x

0

Φ(ξ) sinh(
√

p(x−ξ)) dξ.
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This is the solution of the problem (5.1) in Laplace transform space. We determine
u(x, t) from ū(x, p) using the complex inversion formula

u(x, t) =
1

2πi

∫ α+i∞

α−i∞
eztū(x, z) dz

=
1

2πi

∫ α+i∞

α−i∞
ezt

(
cosh(

√
zx)√

z sinh
√

z + γ

∫ 1

0

Φ(ξ) cosh(
√

z(1− ξ)) dξ

− 1√
z

∫ x

0

Φ(ξ) sinh(
√

z(x− ξ)) dξ

)
dz. (5.2)

The point z = 0 is a removable singularity in the second integral of (5.2). Con-
sequently the only zeros of the denominator of the first integral of (5.2) are given
by √

z sinh
√

z + γ = 0. (5.3)

5.1. Determination of the poles

To determine the zeros zn of (5.3) let
√

z = a + ib (z = a2 − b2 ± 2iab). Then (5.3)
can be written in the form

(a + ib) sinh(a + ib) + γ = 0

where the real values a and b are solutions of the equations

a sinh a cos b− b cosh a sin b = −γ, (5.4)

b sinh a cos b + a cosh a sin b = 0. (5.5)

Since the left-handrm sides of both (5.4) and (5.5) are even functions we need only
consider the case a ≥ 0 and b ≥ 0. Note that for γ = 0 the zeros of (5.3) are
zn = −n2π2, n = 0, 1, 2, . . . . We shall now study the case γ > 0.

If b = 0 then (5.3) has positive real roots z = a2, where a are the roots of

a sinh a = −γ. (5.6)

The left-hand side of (5.6) is positive while the right-hand side is negative. Thus,
there is no positive real pole for any γ > 0.

If a = 0 then (5.3) has the negative real roots z = −b2, where b are the roots of

b sin b = γ. (5.7)

Figure 1 shows that there is an infinite number of negative real poles of order one
for every value of γ. Moreover, for some values of γ we can observe the existence
of negative real poles of order two. In this case γ and the corresponding b satisfy
not only (5.3) but also

d

dz
(
√

z sinh
√

z + γ) = 0
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Figure 1: Determination of negative real poles z = −b2 of order one and two.

For these values of γ the functions b sin b and γ on the left-hand and right-hand
sides of the equation (5.7) have the common tangent, i.e.

sin b + b cos b = 0. (5.8)

Once we have found the roots of (5.8), we obtain from (5.7) those values of γ which
permit double roots to occur. The smallest such value is γ = 1.819705 and, in
addition to this, Figure 1 depicts another two values of γ when double roots occur.

Further substantial analysis shows that as γ increases the roots come together
in pairs and coalesce sequentially starting with the pair closest to the imaginary
axis. These double roots then split and travel into the complex plane along an arc
before eventually crosing the imaginary axis. It is demonstrated that this will occur
when γ = 17.798542. In fact this can be deduced from Figure 1: as γ increases we
observe a sequence of double roots being created and then disappearing.

The critical values of the parameter γ (γ = 1.819705 and γ = 17.798542) coincide
with the ones obtained by Guidotti & Merino in [7]. In their paper the equivalent
values of γ are 0.5792 and 5.6655 since their problem is defined over (0, π) rather
then (0, 1).

Finally an equivalence may be established between the poles and the eigenvalues
of the semi-discretised problem of §4 as N → ∞. This allows us to determine the
stability of the original thermostat problem from an examination of the poles.
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Figure 2: Numerical plots of u(x, t) computed from the analytic solution for various
values of γ and the position of their corresponding poles in the complex plane.
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Figure 3: Poles near the imaginary axis. A magnification of Figure 3.

5.2. Analytic solution

We can write the solution (5.2) as the sum of residues

u(x, t) =
∑

∀n

2eznt√zn cosh(
√

znx)
sinh

√
zn +

√
zn cosh

√
zn

∫ 1

0

Φ(ξ) cosh(
√

zn(1− ξ)) dξ. (5.9)

If γ takes the value for which double poles occur, we add to u(x, t) in (5.9) a further
sum of residues corresponding to these poles. This solution and position of its
asociated poles is graphically illustrated by Figures 2 and 3.

6. Almost Local Problem

In this section we turn our attention to the problem (1.1a-c) with the boundary
condition (1.2). The behaviour of the solution of the almost local initial-boundary
value problem with x∗ = 1− ε, 0 < ε ¿ 1 can be investigated using the technique of
the preceding sections. Note that a similar linearisation may be carried out and we
can write down the solution of the associated linear problem in Laplace transform
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space

ū(x, p) =
γ cosh(

√
px)√

p(
√

p sinh
√

p + γ cosh(
√

px∗))

∫ x∗

0

Φ(ξ) sinh(
√

p(x∗ − ξ)) dξ

+
cosh(

√
px)√

p sinh
√

p + γ cosh(
√

px∗)

∫ 1

0

Φ(ξ) cosh(
√

p(1− ξ)) dξ

− 1√
p

∫ x

0

Φ(ξ) sinh(
√

p(x− ξ)) dξ;

thus u(x, t) is given by

u(x, t) =
∑
∀n

2ezntγ cosh(
√

znx)
sinh

√
zn+

√
zn cosh

√
zn+x∗γ sinh(

√
znx∗)

∫ x∗

0
Φ(ξ) sinh(

√
zn(x∗ − ξ)) dξ

+
∑
∀n

2eznt√zn cosh(
√

znx)
sinh

√
zn+

√
zn cosh

√
zn+x∗γ sinh(

√
znx∗)

∫ 1

0
Φ(ξ) cosh(

√
zn(1− ξ)) dξ

plus any residues corresponding to the poles of order two.
Substantial analysis shows that the same pattern emerges for the almost local

case as existed for the nonlocal case. Here there exist ranges of γ, (0, γ1), (γ1, γ2),
(γ2,∞) for which the solution is respectively, exponentially stable, oscillatory but
bounded, and unstable. As might have been anticipated the closer x∗ is to 1 the
more stable the system will be i.e. the critical values γ1 and γ2 increase as x∗ → 1.

7. A Model with the Flux Leakage from Left End

In the preceding sections we have considered a model for a thermostat with the left
end (x = 0) insulated. In the following more realistic model we consider the leakage
of heat from left end. Thus the initial-boundary value problem for the temperature
u(x, t) is as follows:

ut = uxx, 0 < x < 1, t > 0, (7.1a)
u(x, 0) = Φ(x), 0 < x < 1, (7.1b)
ux(0, t) = β(u(0, t) + 1), t > 0, (7.1c)
ux(1, t) = −γu(0, t), t > 0, (7.1d)

where β > 0 and γ > 0. Here we consider the linearized problem directly. Strictly
we should start with the nonlinear problem (7.1) (i.e. with (7.1d) replaced by
ux(1, t) = H(u(0, t))), perform a semi-discretisation, a linearisation and then the
determination of the eigenvalues of the resulting spatially discrete operator or ma-
trix. However, again we can show that the eigenvalues tend to the poles associated
with the linearized problem. Thus we proceed directly to the linear problem, ob-
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taining the solution

u(x, t) =
∑

∀n

2eznt
(√

zn cosh(
√

znx) + β sinh(
√

znx)
)

(1 + β) sinh
√

zn +
√

zn cosh
√

zn

∫ 1

0

Φ(ξ) cosh(
√

zn(1− ξ)) dξ

−
∑

∀n

2ezntβ cosh
√

zn

(√
zn cosh(

√
znx) + β sinh(

√
znx)

)

zn

(
(1 + β) sinh

√
zn +

√
zn cosh

√
zn

)

+
β

β + γ
(γx− 1).

A further sum of residues corresponding to double poles will need to be added for
appropriate values of γ and β.

The presence of zero poles results in critical stability of the solution (7.2). It
means that if this solution is asymptotically or oscillatory stable, it does not tend
to zero as observed in §4. Indeed, as t tends to infinity the sums in (7.2) tend to
zero, and therefore u(x, t∞) tends to β(γx− 1)/(β + γ).

Once again the same pattern has been observed. The particular character of the
solution is governed by two parameters γ and β; figure 4 displays a β − γ stability
diagram.
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8. A Model with Heat Loss

The partial differential equation describing the models in the preceding sections is
homogeneous. Let us now consider a model for a thermostat where leakage along
the heating system is allowed. Then the temperature distribution is given by the
solution of the initial-boundary value problem

ut = uxx − ωu, 0 < x < 1, t > 0,

u(x, 0) = Φ(x), 0 < x < 1,

ux(0, t) = 0, t > 0,

ux(1, t) = −γu(0, t), t > 0,

where ω > 0 and γ > 0. Using the transformation

u(x, t) = e−ωtv(x, t)

it is not difficult to show that the solution u(x, t) can be written as follows

u(x, t) =
∑

∀n

2e(zn−ω)t√zn cosh(
√

znx)
sinh

√
zn +

√
zn cosh

√
zn

∫ 1

0

Φ(ξ) cosh(
√

zn(1− ξ)) dξ.

We can show that even when the original problem is unstable (i.e. γ > 17.798542),
the parameter ω can make the solution stable.

Figure 5 is a stability diagram displaying three regions of stability within the
(γ, ω)-plane: exponential stability, oscillatory but exponentially damped behaviour
and instability. It is noted that the poles with positive real part may be translated
back into the oscillatory stable region by choosing ω sufficiently large, but never
into the exponentially stable region. An open question remains: is there an analytic
expression for the dividing stability curve.

9. Concluding Remarks

This paper has considered a paradigm for the air-conditioning problem where the
controller or thermostat is situated at some distance from the extractor unit. This
paradigm consisted of a one-dimensional heat conduction equation with a nonlocal
and nonlinear boundary condition. Existence and uniqueness were first established
through its equivalent representation as a Volterra integral equation.

Semi-discretisation of the spatial variable resulted in a nonlinear system of or-
dinary differential equations whose stability was studied through linearisation and
application of the Hopf bifurcation theorem. By considering the poles associated
with the linearized problem an analytic solution was written down and its numerical
evaluation was discussed. Further it was shown that the eigenvalues associated with
the discrete linear operator tended, in the limit as the dimensionality increased, to
the poles and this fact was used to understand the stability of the solution of the
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Figure 5: Stability diagram: relation between γ and ω.

original nonlinear problem. Indeed the solution was shown to be asymptotically sta-
ble, oscillatory but bounded by a negative exponential, or oscillatory and unbounded
for different ranges of a parameter characterising the heat transfer coefficient. An
almost local problem was considered whereby the thermostat was situated close to
the extractor unit. It was shown that an unstable solution could still exist: however
the closer the thermostat was to the extractor unit, the larger the value of γ needed
to be to cause instability. The more practical cases when flux leakage from one end
or heat loss were permitted were also studied with similar results: the larger the
heat transfer coefficient the larger the value of γ required to cause instability.

The practical conclusions are that air-conditioning systems can be unstable,
that the position of the thermostat might well be crucial, and stability or otherwise
certainly depends upon the power input. In colder climates central heating might
be of more interest. In this case the boiler is either switched on or off according
to the temperature where the controller is situated. It would appear that whether
this problem with flux leakage is stable or not is still an open question.
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