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Abstract. Affine arithmetic (AA) is a model for self-validated computation which,
like standard interval arithmetic (IA), produces guaranteed enclosures for com-
puted quantities, taking into account any uncertainties in the input data as well
as all internal truncation and roundoff errors. Unlike standard IA, the quantity
representations used by AA are first-order approximations, whose error is gene-
rally quadratic in the width of input intervals. In many practical applications, the
higher asymptotic accuracy of AA more than compensates for the increased cost of
its operations.

1. Introduction

A self-validated (SV) numerical algorithm keeps track of the accuracy of all quan-
tities that it computes, as part of the process of computing them. So, even if one
cannot pre-determine a general upper bound for the numerical error of the result,
at least one can obtain such a bound a posteriori for each computation.

Self-validated computation was originally developed as a means of certifying
numerical algorithms used in real-world applications, which are often too complex
to allow theoretical error analysis. Of course, an SV algorithm is not suitable for
critical applications where one needs a priori accuracy guarantees. Typically, an
SV algorithm is embedded in a system that can take appropriate remedial action
whenever the computed error bounds are too large. (If the error is mainly due to
internal approximations and rounding, one option is to repeat the SV computation
with increased precision, until the output error estimates are small enough. This
idea is the foundation of lazy real arithmetic [35].)

The techniques that SV algorithms use for keeping track of internal approxima-
tion errors can also encode the uncertainty in the computed quantities that comes
from external causes, such as measurement errors, manufacturing tolerances, ad-
justable parameters, or other unknown deviations in the input data. The final error
bounds computed by the algorithm will then automatically account for those exter-
nal factors. In fact, SV algorithms are often used not so much to bound computation
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errors, but for range analysis — finding guaranteed upper and lower bounds for the
value of a mathematical function over a specified region of its domain.

A self-validated computation model is a general method for constructing SV algo-
rithms for arbitrary mathematical formulas. The canonical self-validated computa-
tion model is interval arithmetic [38], which we describe in section 2. Several other
models have been designed to produce more accurate error estimates, usually by
storing more information about the computed quantities and how they relate to the
input data. In section 3 we describe one particular such model, affine arithmetic [5],
which has been used with advantage in a number of practical applications.

2. Interval arithmetic

In interval arithmetic (IA), also known as interval analysis, a real quantity x is
represented by an interval x̄ = [xmin xmax] of floating-point numbers. Those
intervals are added, subtracted, multiplied, etc., in such a way that each computed
interval x̄ is guaranteed to contain the corresponding ideal quantity x — the (un-
known) real value of the corresponding variable in the exact (error-free, uncertainty-
free) computation which is being approximated. For example, if the ideal quantities
x and y are known to lie in the intervals x̄ = [2 4] and ȳ = [−3 2], then the
sum x + y lies in the interval x̄ + ȳ = [2 − 3 4 + 2] = [−1 6], and the product
xy in [4 · −3 4 · 2] = [−12 8]. (Note that any roudoff errors in the computed
bounds must be directed so as to displace the endpoints outwards.)

Interval analysis was formalized by Ramon E. Moore in the 1960s [38, 39]. After
some three decades of neglet — if not outright prejudice — by numerical analysts,
IA was “rediscovered” by researchers from many applied fields, who found it to be
a flexible and effective tool for rangeanalysis. This revival of IA was greatly helped
by the widespread acceptance of the IEEE Floating-Point Standard [24], whose
directed-rounding capabilities allowed efficient and machine-independent bounding
of roundoff errors.

Successful applications of IA now include, for example, robust root finders for ray
tracing [36, 2], domain enumeration for solid modeling, [11, 40, 45, 47, 48], surface
intersection [14], global optimization [17, 18, 19, 23, 26, 37, 43, 42, 49]. Inter-
val computations recently settled the double bubble conjecture [21], a longstanding
open problem in the theory of minimal surfaces. Several good-quality portable IA
libraries are available [28, 29, 27, 1]. Interval arithmetic and related techniques now
have a dedicated journal [44], a central web site containing a wealth of information
and links [30], and several established conferences.

2.1. The interval overestimation problem

Unfortunately, IA often yields an interval that is much wider than the exact range
of the computed function. As an extreme example, the IA evaluation of x−x given
x ∈ x̄ = [2 5] produces [2 − 3 5 − 2] = [−3 +3] — instead of [0 0], which
is the actual range of that formula. Note that the IA subtraction routine cannot
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assume that the two given intervals denote the same ideal quantity, since they could
also denote two independent quantities that happen to have the same range.

More generally, if the arguments of an operation z ← f(x, y) are somewhat
correlated, the interval z̄ ← f̄(x̄, ȳ) computed with IA may be significantly wider
than the actual range of the ideal quantity z. We may define the IA overestimation
factor σ of that operation as the width of the computed interval z̄ divided by the
width of the exact range of z, assuming that x̄ and ȳ are the true ranges of x
and y. It turns out that, for intervals centered at any fixed values x and y, the
factor σ depends on the amount and sign of correlation, and on the derivatives of
f , but is roughly independent of the width of the operands. For example, when
computing x(10 − x) for x in the range [3 5], IA yields the interval [15 35],
which is 5 times wider the exact range [21 25]. If the input interval is reduced to
[3.9 4.1], the IA result will be [23.01 25.01], still 5 times wider than the exact
range [23.79 24.19].

This overestimation problem has hampered the use of IA in many potential
applications. In chained computations, where the results of one step are inputs
for the next step, the overestimation factors of the individual steps tend to get
multiplied. As a consequence, the final intervals may easily become too wide to be
useful — by several orders of magnitude. See figure 1. To obtain a useful range
estimate with IA in such cases, one would have to partition the given interval into
thousands of sub-intervals, and repeat the evaluation on each part.

-2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

Figure 1: Error explosion in IA estimates for iterated functions. Left: The
function g(x) =

√

x2 − x + 1/2/
√

x2 + 1/2 (black curve) and the result of
evaluating g(x̄) with standard IA, for 16 consecutive intervals x̄ of width 0.25 in
[−2 +2]. Right: The same data for the second iterate h(x) = g(g(x)) of g(x).
Note that the iterated interval evaluation ḡk(x̄) diverges, even though the
iterates gk(x) of the original function quickly converge to a constant (≈ 0.559).

3. Affine arithmetic

Affine arithmetic (AA) is one of several SVC models that were proposed to over-
come the error explosion problem of standard IA [5, 10, 8]. Besides recording a
range for each ideal quantity, affine arithmetic also keeps track of correlations be-
tween those quantities. Thanks to this extra information, the approximation error
incurred in each AA operation normally has a quadratic dependency on the size of
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the input intervals — even when the operands are correlated, as in the x(10 − x)
example above. Therefore, if the input intervals are small enough, each operation
will provide a fairly tight estimate of the exact range of the corresponding quantity,
with overestimation factor near 1 (except near stationary points). This benefit will
hold also for many chained computations where IA undergoes error explosion.

In affine arithmetic, an ideal quantity x (given or computed) is represented by
an affine form x̂, which is a first-degree polynomial:

x̂ = x0 + x1ε1 + x2ε2 + · · ·+ xnεn. (3.1)

The coefficients xi are finite floating-point numbers, and the εi are symbolic real
variables whose values are unknown but assumed to lie in the interval U = [−1
+1]. We call x0 the central value of the affine form x̂; the coefficients xi are its
partial deviations, and the εi are the noise symbols.

Each noise symbol εi stands for an independent component of the total uncer-
tainty of the ideal quantity x; the corresponding coefficient xi gives the magnitude of
that component. The sources of this uncertainty may be “external” (already present
in the input data) or “internal” (due to arithmetic roundoff or approximations in
the computation of x̂).

The fundamental invariant of affine arithmetic states that, at any instant be-
tween AA operations, there is a single assignment of values from U to each of the
noise variables in use that makes the value of every affine form x̂ equal to the true
value of the corresponding ideal quantity x [10].

3.1. Conversions between IA and AA

Every affine form x̂ = x0 + x1ε1 + · · · + xnεn implies an interval bound for the
corresponding ideal quantity x: namely, x ∈ x̄ = [x0 − r x0 + r], where r is
the total deviation of x̂,

∑n
i=1
|xi|. This is the smallest interval that contains all

possible values of x̂, assuming that each εi ranges independently over the interval
U = [−1 +1]. Note that the bounds of x̄ must be rounded outwards, and that
this conversion discards all the correlation information present in x̂.

Conversely, every ordinary interval bound x̄ = [a b] for an ideal quanity x can
be replaced by an affine form x̂ = x0 + xkεk, where x0 is the midpoint (a + b)/2
of x̄, xk is the half-width (b − a)/2, and εk is a new noise symbol, not occurring
in any other existing affine form. The new symbol εk represents the uncertainty in
the value of x that is implicit in its interval representation x̄. Again, note that x0

and xk must be carefully rounded, and that the new affine form, like the interval
x̄, carries no correlation informtion.

3.2. Joint range of affine forms

The key feature of AA is that the same noise symbol εi may contribute to the uncer-
tainty of two or more quantities (inputs, outputs, or intermediate results) x̂ and ŷ
arising in the evaluation of an expression. The sharing of noise symbols indicates
some partial dependency between the underlying quantities x and y, determined by
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the corresponding coefficients xi and yi. Note that the signs of these coefficients are
not meaningful in themselves, because the sign of εi is arbitrary; but the relative
sign of xi and yi defines the direction of the correlation. For example, suppose that
the quantities x and y are represented by the affine forms

x̂ = 20− 4ε1 + 2ε3 + 3ε4

ŷ = 10− 2ε1 + 1ε2 − 1ε4

From this data, we can tell that x lies in the interval x̄ = [11 29] and y lies in
ȳ = [6 14]; i.e., the pair (x, y) lies in the grey rectangle of figure 2. However,
since the two affine forms include the same noise variables ε1 and ε4 with non-zero
coefficients, they are not entirely independent of each other. In fact, the pair (x, y)
must lie in the dark grey region of figure 2, which is the set of all possible values of
(x̂, ŷ) when the noise variables ε1, .. ε4 are independently chosen in U. This set is
the joint range of the forms x̂ and ŷ, denoted 〈x̂, ŷ〉.

11 29

6

14

Figure 2: Joint range 〈x̂, ŷ〉 of two partially dependent quantities as implied by
their affine forms x̂ = 20− 4ε1 + 2ε3 + 3ε4 and ŷ = 10− 2ε1 + 1ε2 − 1ε4.

As can be inferred from figure 2, the set 〈x̂, ŷ〉 is a convex polygon, symmetric
around its center (x0, y0). If the forms depend on n noise symbols ε1, .. εn, the
joint range has 2n sides; each εi corresponds to a pair of opposite sides, which are
parallel and congruent to the segment with endpoints (xi, yi) and (−xi,−yi). In
fact, the joint range 〈x̂, ŷ〉 is the Minkowski sum [16] of all those segments with the
point (x0, y0). The 2n vertices of 〈x̂, ŷ〉 are the corners of the convex hull of the
2n points (x̂, ŷ) that are obtained by setting each εi to −1 or +1, in all possible
combinations.

Similarly, the joint range 〈x̂, ŷ, ẑ〉 of three affine forms x̂, ŷ and ẑ is a convex
polyhedron, center-symmetric around the point (x0, y0, z0), with Θ(n2) vertices,
edges and faces in the worst case.

In general, any m affine forms x̂1, .. x̂m determine a joint range 〈x̂1, .. x̂m〉 ⊆ R
m,

defined as the set of all tuples (x1, .. xm) of values for the corresponding ideal
quantities that are simultaneously compatible with those affine forms. Note that
〈x̂1, .. x̂n〉 is the parallel projection on R

m of the hypercube U
n by the affine map

(x̂1, .. x̂m). The projection is a zonotope, a center-symmetric convex polytope in
R

m, whose faces are themselves center-symmetric. It is the Minkowski sum of the
point (x1

0
, .. xm

0
) and the n segments si with endpoints (x1

i , .. xn
i ) and (−x1

i , .. −xn
i ).
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3.3. Computing with AA

In order to evaluate a formula with AA, we must replace each elementary operation
z ← f(x, y) on real quantities x and y by a corresponding procedure ẑ ← f̂(x̂, ŷ),
which takes affine forms of those quantities and returns an affine form for the result
z. By definition, there are (unknown) values of ε1, .. εn ∈ U

n such that

x = x0 + x1ε1 + .. xnεn (3.2)

y = y0 + y1ε1 + .. ynεn (3.3)

Therefore, the exact result z is a function of the unknowns εi, namely

z = f(x, y)

= f(x0 + x1ε1 + .. xnεn, y0 + y1ε1 + .. ynεn.) (3.4)

The challenge now is to replace f(x, y) by an affine form

ẑ = z0 + z1ε1 + .. zmεm

for some m ≥ n, that preserves as much information as possible about the con-
straints between x, y, and z that are implied by (3.2–3.4). Note that this approach
can be applied to operations with any number of arguments.

3.3.1. Affine operations

If the operation f itself is an affine function of its arguments x and y, then for-
mula (3.4) can be expanded and rearranged into an affine combination of the
noise symbols εi. Namely, for any given constants α, β, ζ ∈ R, the computation
z ← αx + βy + ζ can be carried out as

ẑ ← αx̂+βŷ+ζ = (αx0+βy0+ζ) + (αx1+βy1)ε1 + · · · + (αxn+βyn)εn. (3.5)

Except for roundoff errors and overflows, the affine form ẑ above, together with x̂
and ŷ, captures all the information about the quantities x, y, and z that can be
deduced from the given affine forms x̂ and ŷ, and the equation z = αx + βy + ζ.

Observe that the computation of x̂ − x̂ by formula (3.5) yields exactly zero.
Since the two operands use the same noise symbols with the same coefficients, the
AA subtraction procedure “knows” that they are actually the same ideal quantity,
and not just two independent quantities that happen to have the same range. By
the same token, linear identities such as (x̂+ ŷ)− x̂ = ŷ or (3x̂)− x̂ = 2x̂, which do
not hold in IA, do hold in AA (except for floating-point roundoff errors).

Thus, an AA computation that uses only affine operations with known constant
coefficients will usually give an almost-exact range for the ideal result. In fact, it
will give an almost-exact explicit formula for the ideal result in terms of the input
variables — more precisely, in terms of the εi that occur in the input forms.
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3.3.2. Handling roundoff errors

Formula (3.5) ignores floating-point roundoff errors, which must be taken into ac-
count in order to preserve the fundamental invariant of AA (see section 3). One
might think that (as in IA) it suffices to round each coefficient zi of the result ẑ in
the “safe” direction, namely away from zero. However, if the noise variable εi occurs
in some other affine form ŵ, then any error in zi — in either direction — would
imply a different correlation between the quantities z and w, and would falsify the
fundamental invariant.

The correct way to handle roundoff errors is to extend the resulting form ẑ with
an additional term zkεk, where zk is an upper bound for the sum of all absolute
errors di incurred in the computation of the coefficients zi, and εk is a noise symbol
that does not occur in any other affine form. Note that we are allowed to round zk

conservatively (away from zero), since that term, which uses a brand-new symbol
εk, does not imply any correlations.

3.3.3. Non-affine operations

Consider now a generic non-affine operation z ← f(x, y). If x and y are represented
by the affine forms x̂ and ŷ, then the ideal quantity z is given by the formula

z = f(x0 + x1ε1 + .. xnεn, y0 + y1ε1 + .. ynεn)

= f∗(ε1, .. εn), (3.6)

where f∗ is a function from U
n to R. If f∗ is not affine, then z cannot be expressed

exactly as an affine combination of the noise symbols εi. In that case, we must
choose some affine function of the εi,

fa(ε1, .. εn) = z0 + z1ε1 + · · ·+ znεn (3.7)

that approximates f∗(ε1, .. εn) reasonably well over its domain U
n, and then add

to it an extra term zkεk to represent the error introduced by this approximation.
That is, we return

ẑ = fa(ε1, .. εn) + zkεk

= z0 + z1ε1 + · · ·+ znεn + zkεk. (3.8)

The term zkεk will represent the approximation error f e(ε1, .. εn) = f∗(ε1, .. εn)−
fa(ε1, .. εn). As in section 3.3.2, the noise symbol εk must be distinct from all other
noise symbols that already appeared in the same computation, and the coefficient
zk must be an upper bound on the absolute magnitude of the approximation error
f e; that is,

|zk| ≥ max { |f∗(ε1, .. εn)− fa(ε1, .. εn)| : ε1, .. εn ∈ U } . (3.9)

The residual coefficient zk must also take into account any roundoff errors incurred
in the computation of the other coefficients z0, .. zn.



304 Stolfi and Figueiredo

Note that the substitution of zkεk for f e(ε1, .. εn) in formula (3.8) entails a
loss of information: the noise symbol εk is actually a function of ε1, .. εn, but this
constraint is not recorded, so subsequent computations will assume that εk is an
independent source of variation. Therefore, we can take |zk| as a measure of this

information loss, i.e., the approximation error of the operation ẑ ← f̂(x̂, ŷ).

3.3.4. Example: multiplication

To illustrate this general principle, let’s consider the multiplication of two affine
forms, ẑ ← x̂ŷ, where x̂ = 30 − 4ε1 + 2ε2 and ŷ = 20 + 3ε1 + 1ε3. Note that
the operands are partially correlated through the shared noise symbol ε1. We can
collect the terms of the product x̂ŷ, into an affine part A and a pure quadratic
residue Q, where

A(ε1, .. εn) = 600 + 10ε1 + 40ε2 + 30ε3

Q(ε1, .. εn) = (−4ε1 + 2ε2)(3ε1 + 1ε3)

The two factors of Q, considered independently, have ranges [−6 +6] and [−4
+4]; therefore, a quick estimate for the range of Q is Q̄ = [−24 +24], i.e. 0+24ε4

in affine format. Using this estimate, we can choose for z the affine form

ẑ = 600 + 10ε1 + 40ε2 + 30ε3 + 24ε4.

which implies that the range of z is contained in 600± 104 = [496 704].
A detailed analisis shows that the actual range of x̂ · ŷ is [528 675]; therefore,

the range implied by AA is only (704 − 496)/(675 − 528) = 1.42 times wider than
the exact range. For comparison, computing the product z ← xy with standard
IA would yield the interval z̄ = [24 36] · [16 24] = [384 864], which is
(864 − 384)/(675 − 528) = 3.26 times wider than the actual range. The large
discrepancy is due to the negative correlation between x and y, implied by the
shared symbol ε1. The correlated terms −80ε1 and +90ε1 nearly cancel out in the
AA computation, but are added with the same sign in the IA computation.

Note, moreover, that the affine form ẑ also traces most of the uncertainty in
the AA result to uncertainty in the original data, represented by the noise variables
ε1, ε2, and ε3; the approximation error (loss of information) introduced by the AA
operation itself is only the residual term 24ε4. In contrast, the IA result [384
864] = 624± 240 does not specify the source of its uncertainty, and therefore all of
it must be viewed as approximation error of that operation.

3.4. Selecting the affine approximation

There are n + 1 degrees of freedom in the choice of the affine approximation fa

in equation (3.10). The AA model leaves the choice to the implementor, provided
that the approximation error |zk| in equation (3.8) is asymptotically as good as one
could hope for. In particular, if f is twice differentiable, the error term must depend
quadratically on the radius of the joint range of the affine forms x̂, ŷ, . . ..
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In the interest of simplicity and efficiency, we consider only normal approxi-
mations fa, that are themselves affine combinations of the input forms x̂ and ŷ;
i. e.,

fa(ε1, .. εn) = αx̂ + βŷ + ζ. (3.10)

Thus, we have only three parameters to determine, instead of n + 1. In particular,
for a unary operation z ← f(x), a normal approximation is a straight line on the
x–z plane. After the operation, the joint range 〈x̂, ẑ〉 of the affine forms x̂, ẑ will
be a parallelogram with vertical sides of length 2 |zk|, bisected by that line. The
constraint on |zk| (equation (3.9)) ensures that the range 〈x̂, ẑ〉 encloses the graph
of f(x), restricted to the interval x̄. See figure 3 (left).

Similarly, for a binary operation z ← f(x, y), a normal approximation fa defines
a plane z = αx + βy + ζ in the (x, y, z) space. The joint range 〈x̂, ŷ, ẑ〉 will then
be a prism with vertical walls and oblique bases, parallel to and equidistant from
this plane. This prism has vertical extent 2 |zk|, and its projection on the x–y plane
is the polygon 〈x̂, ŷ〉. Condition (3.9) ensures that the prism encloses the graph of
f(x, y), restricted to 〈x̂, ŷ〉. See Figure 3 (right).

0.25 1.75

0.5

1.0

Figure 3: Left: Normal approximation of the function z =
√

x (solid curve),
given x̂ = 1 + 0.75ε1, by the affine function fa(x) = 0.5x + 0.4± 0.15 (dashed
line), yielding ẑ = 0.5 + 0.4ε1 + 0.15ε2. Right: Normal approximation of the
function z = 10 + (x2 + y2)/80 (curved surface), given the affine forms
x̂ = 15− 4ε1 + 3ε3 + 5ε4, ŷ = 15 + 2ε1 + 2ε2 − ε4, by the affine function
fa(z) = 0.3281x + 0.3750y + 5.5469± 3.2815 (plane), yielding
ẑ = 16.0938− 0.5625ε1 + 0.7500ε2 + 0.9844ε3 + 1.2656ε4 + 3.2815ε5.

3.4.1. Chebyshev approximations

Among normal approximants, the best choice for fa — in the sense of minimizing
the error term |zk| — is the one which minimizes the maximum absolute error
|αx + βy + ζ − f(x, y)|, when x and y range over the polygon 〈x̂, ŷ〉. This is called
the Chebyshev (or minimax ) affine approximation of f over 〈x̂, ŷ〉.

In particular, for a unary operation z ← f(x), the Chebyshev criterion ensures
that the joint range 〈x̂, ẑ〉 of the input and output forms will be the minimum-area
parallelogram with vertical sides that encloses the graph of f over the interval x̄
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implied by x̂. See figure 4 (left). For a binary operation z ← f(x, y), the Chebyshev
criterion implies that the range 〈x̂, ŷ, ẑ〉 is the minimum-volume prism, with vertical
sides and parallel oblique bases, that encloses the surface z = f(x, y) when (x, y) is
restricted to the polygon 〈x̂, ŷ〉. See figure 4 (right).

0.25 1.75

0.5

1.0

Figure 4: Left: Chebyshev affine approximation of z =
√

x, given the affine
form x̂ = 1 + 0.75 ε1, by the form fa(z) = 0.5486x + 0.4093± 0.0466 yielding
ẑ = 0.9579 + 0.41145ε1 + 0.0466ε2. Right: Chebyshev affine approximation of
z = 10 + (x2 + y2)/80, given x̂ = 15− 4ε1 + 3ε3 + 5ε4, ŷ = 15 + 2ε1 + 2ε2 − ε4,
by the affine function fa(z) = 0.375x + 0.385y + 5.432± 1.058 (plane), yielding
ẑ = 16.6812− 0.7500ε1 + 0.7500ε2 + 1.1250ε3 + 1.5000ε4 + 1.0581ε5.

3.5. Implementing affine arithmetic

In some applications, roundoff errors are known to be negligible compared to other
sources of uncertainty, such as argument variation and truncation errors. In such
cases, affine arithmetic is fairly easy to implement; see for example the C++ library
published by O. Gay [13]. Indeed, it appears that many researchers have created
similar AA libraries for their own use. (See the bibliography). For a version that
takes roundoff errors into account, see the C library made available by J. Stolfi [46].

3.6. Using affine arithmetic

Many applications of IA use some sort of adaptive domain subdivision, where an
initial argument interval is recursively partitioned into smaller intervals, until the
result intervals satisfy some criterion such as small size or definite sign [10]. One can
substitute AA for IA in each sub-interval, simply by converting the input intervals
to affine forms, and reducing the computed AA form to an interval. Since AA
yields aymptotically tighter ranges than IA in many cases, the replacement is worth
considering — at least, in situations where the input intervals are small enough for
the asymptotic analysis to become relevant. See figure 5, which should be compared
to figure 1. Specifically, if the IA computation has n arguments and overestimates
the result’s range by a factor σ, the use of AA may reduce the number of function
evaluations by a factor 1/σn. Since σ is often much larger than 1, this gain can
easily offset the higher cost of AA operations [10].
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Figure 5: Avoiding error explosion in iterated functions with affine arithmetic.
The plots show the result of evaluating y = g(x) =

√

x2 − x + 1/2/
√

x2 + 1/2
(left) and its iterate y = h(x) = g(g(x)) (right), over 16 equal intervals x̄ of with
0.25 in [−2 +2]. Each sub-interval was converted to an affine form, the
function was evaluated with AA, and the result ŷ was converted to an ordinaty
interval ȳ for plotting.

However, this naive use of AA — as a mere plug-in replacement for IA — fails to
exploit its main advantage, namely that it yields first-order approximations to the
function, with quadratic approximation errors. To take advantage of this feature,
the application must be modified to use enclosures based on affine forms (zono-
topes) instead of intervals (axis-aligned boxes). Then, one should be able to meet
a specified tolerance δ with O(1/δn/2) function evaluations, instead of O(1/δn) as
required by IA [9]. See figure 6.

-2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

Figure 6: Effective use of affine arithmetic for function modeling. The plot
shows the same function g of figures 1 (left) and 5 (left), evaluated ofver the
same intervals. Here each parallelogram is the joint range 〈x̂, ŷ〉 of an input
sub-interval x̄, converted to an affine form x̂, and the the corresponding AA
result ŷ ← ga(x̂).
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4. Conclusions

It goes without saying that the elementary operations of AA are substantially more
expensive than those of standard IA. The internal representation of a quantity that
depends on n input variables requires Ω(n) storage, and its computation requires
Θ(n) instructions. However, the tighter range estimates provided by AA often lead
to fewer function evaluations, so the total running time is actually reduced; and
this advantage increases as the global error tolerance gets reduced. Indeed, AA has
been found to be more efficient than IA in many applications [10, 22, 34, 33, 3, 25,
32, 50, 6, 7, 12, 15, 9].

There are other SV computation models that provide first-order approxima-
tions, including E. R. Hansen’s generalized interval arithmetic [20] and its centered
form variant [41], first-order Taylor arithmetic [41], and the ellipsoidal calculus of
Chernousko, Kurzhanski, and Ovseevich [4, 31]. Although a systematic comparative
analysis of those models is still lacking, affine arithmetic seems to have several ad-
vantages over them, including a wider range of applications and a more convenient
programming interface.
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Resumo. A aritmética afim (AA) é um modelo para computação auto-validada,
que, assim como a aritmética intervalar (AI) padrão, produz envoltórias garantidas
para os valores calculados, levando em conta tanto eventuais incertezas nos dados de
entrada quanto os erros internos de truncamento e arredondamento. Ao contrário
da AI padrão, as representações de grandezas usadas na AA são aproximações
de primeira ordem, cujo erro tem geralmente dependência quadrática na largura
dos intervalos de entrada. Em muitas aplicações, a maior precisão assintótica da
aritmética afim mais do que compensa o custo maior de suas operações.
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