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Abstract. The present work is concerned with a study of numerical schemes for
solving two-dimensional time-dependent incompressible free-surface fluid flow prob-
lems. The primitive variable flow equations are discretized by the finite difference
method. A projection method is employed to uncouple the velocity components
and pressure, thus allowing the solution of each variable separately (a segregated
approach). The diffusive terms are discretized by Implicit Backward and Crank-
Nicolson schemes, and the non-linear advection terms are approximated by the
high order upwind VONOS (Variable-Order Non-oscillatory Scheme) technique. In
order to improved numerical stability of the schemes, the boundary conditions for
the pressure field at the free surface are treated implicitly, and for the velocity
field explicitly. The numerical schemes are then applied to the simulation of the
Hagen-Poiseuille flow, and container filling problems. The results show that the
semi-implicit techniques eliminate the stability restriction in the original explicit
GENSMAC method.

1. Introduction

In many fluid flow problems, the viscous forces are dominant and several numeri-
cal techniques have been developed for the solution of this class of flows. In these
problems, the Reynolds number is often much smaller than 1. Due to this fact, nu-
merical techniques that apply an explicit formulation, as GENSMAC (GENeralized
Simplified Marker-And-Cell) method [11], introduce the parabolic stability restric-
tion, making the time step very small for some applications, justifying the need
for methods with better stability properties like implicit schemes. Authors such
as [1], [3], [8] and [10] show an overview about implicit methods for Navier-Stokes
equations. In the present paper, it is proposed a modification in the explicit GENS-
MAC method by adding implicit schemes and treating the boundary conditions for
the pressure field at the free surface implicitly. The time-marching producere is
based on the projection methods (see, for example, [5] and [7]). The methods are
based on a staggered grid system and they solve the full Navier-Stokes equations
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in primitive variables. In particular, the methods solve confined and free surface
flows.

In non-dimensional conservative form, the equations for incompressible viscous
newtonian flows are

∂u

∂t
+ ∇ � (uu) = −∇p+

1

Re
∇2u +

1

Fr2
g, (1.1)

∇ � u = 0, (1.2)

where t is time, u = [u(x, y, t), v(x, y, t)] is the velocity vector field, p = p(x, y, t) is
pressure per unit of mass and g = (gx, gy) is the gravity field. The non-dimensional
parameters Re = LU/ν and Fr = U/

√
gL are the Reynolds and Froude numbers,

respectively, being L and U the length and the velocity scales, and ν is the kinematic
viscosity coefficient of the fluid.

2. Numerical Method

The numerical method proposed in this work to solve the Equations (1.1) and (1.2)
is basically a modification of the GENSMAC method. Firstly, a provisional velocity
field ũ is calculated from Equation (1.1), that is,

∂ũ

∂t
=

{

−∇ � (uu) −∇p̃+
1

Re
∇2u +

1

Fr2
g

}

, (2.1)

where p̃ is a provisional pressure. Generally, this provisional velocity field is not a
solenoidal one, so p̃ 6= p. For t = t0, it is considered that both u(x, t0) and ũ(x, t0)
satisfy the same boundary conditions and that on the boundary u(x, t0) = ũ(x, t0).
The main modification in the GENSMAC method is the inclusion of the Implicit
Formulations (IF ) for two variations in the projection methods.

The first projection method is based on the solution of the time-discretized
Equation (1.1), without a provisional pressure gradient (referred here as pressure-
free projection method [5] and denoted by P1 ), and the second projection method
is based on the method with the provisional pressure gradient as in Equation (2.1)
(referred to incremental-pressure projection methods [7] and denoted here by P2 ).

For the P1 method, it is used implicit methods for the viscous terms. The
implicit schemes used were the Backward Implicit (BI ) and Crank-Nicolson (CN )
methods. In order to improve the temporal accuracy, a 2-step Adams method was
employed. This method uses the CN approximation for the viscous terms and the
explicit Adams-Bashforth for the non-linear convective terms of Equation (2.1).
This method is known as Adams-Bashforth/Crank-Nicolson (AB/CN ). Therefore,
applying the method P1 and using the implicit formulations, Equation (2.1) is
rewritten in the following way

• P1 - BI method

ũ − δt

Re
∇2ũ = un + δt

{

−∇ � (uu)n +
1

Fr2
gn

}

. (2.2)
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• P1 - CN method

ũ − δt

2Re
∇2ũ = un + δt

{

−∇ � (uu)n +
1

2Re
∇2un +

1

Fr2
gn

}

. (2.3)

• P1 - AB/CN method

ũ − δt

2Re
∇2ũ = un + δt

{

−3

2
∇ � (uu)n+

1

2
∇ � (uu)n−1+

1

2Re
∇2un+

1

Fr2
gn

}

.

(2.4)

Using the theory of the projection methods, we know that the tentative velocity ũ
can be decomposed as

ũ = un+1 + ∇ψ, (2.5)

where un+1 is divergence-free. In the P1 method, the function ψ is calculated in
the whole domain.

In the same manner as in the method of P1, the viscous terms were taken
implicitly, and Equation (2.1) for P2 becomes

• P2 - BI method

ũ − δt

Re
∇2ũ = un + δt

{

−∇ � (uu)n −∇p̃+
1

Fr2
gn

}

. (2.6)

• P2 - CN method

ũ − δt

2Re
∇2ũ = un + δt

{

−∇ � (uu)n +
1

2Re
∇2un −∇p̃+

1

Fr2
gn

}

. (2.7)

• P2 - AB/CN method

ũ − δt

2Re
∇2ũ = un + δt

{

−3

2
∇ � (uu)n +

1

2
∇ � (uu)n−1 +

1

2Re
∇2un −∇p̃

+
1

Fr2
gn

}

.

(2.8)

The development of the P2 method using IF is similar to the P1 method, with
the difference that now p̃ 6= 0 will be calculated. As the GENSMAC method, the
Poisson equation for ψ is applied for the whole domain containing fluid, with the
appropriate boundary conditions described in [11]. For the P1 and P2 methods
using IF, besides the Poisson equation, a new equation is imposed on the potential
ψ on the free surface. This new equation is calculated from the equation of the
pressure in the free surface. On the free surface, it is necessary to impose conditions
on the velocity and pressure. Considering absent surface tension, these conditions
are summarized as

(T � n) � n = 0 and (T � n) � m = 0, (2.9)
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where n = (nx, ny) is the external normal vector to the surface, and m = (mx,my) is
the tangent vector to the free surface. By substituting the total tensor T = −pI+τ ,
where τ is the stress tensor and I the identity tensor, in Equation (2.9) we obtain

−p+
2

Re

[

∂u

∂x
n2

x +
∂v

∂y
n2

y +

(

∂u

∂y
+
∂v

∂x

)

nxny

]

= 0, (2.10)

2
∂u

∂x
nxmx + 2

∂v

∂y
nymy +

[

∂u

∂y
+
∂v

∂x

]

(nymx + nxmy) = 0. (2.11)

The equations for ψ at the free surface are derived from the equation of the pressure
Equation (2.10) with implicit velocity. The application of P1 and P2 methods for
the implicit formulations results in 3 sparse linear systems: 2 due to the equations
that calculate the intermediary velocity and 1 due to the calculation of the poten-
tial ψ. When the implicit formulations are applied, for the BI or CN methods,
the viscous terms are taken implicitly, and for this it is necessary to solve systems
for velocities ũ and ṽ. The linear systems resulting from Equations (2.2)–(2.8) are
sparse, positive definite and symmetric. Due to those properties, an efficient method
is the Conjugated Gradient (CG) method. The linear system for ψ is sparse, but
non-symmetric, and therefore the method used was the Bi-Conjugated Gradients
with Preconditioning (BCGP). Besides the method BCGP, other alternatives are
recommended in the literature for sparse problems: the GMRES (Generalized Min-
imum Residual) and PCGS (Preconditioned Conjugate Gradient Squared) are two
examples. More details of the numerical methods using implicit formulations and
boundary conditions at the free surfaces can be found in [9].

2.1. Stability of P1 and P2 methods

The stability restriction imposed for explicit treatment of the viscous terms requires
that

δtviscous ≤ 0.5Re[(δx)−2 + (δy)−2]−1, (2.12)

where δx and δy are grid spacings. The application of Implicit Formulations for the
viscous terms as in Equations (2.2)–(2.8), can, in principle, remove the restriction
(2.12). Therefore, the restrictions on δt for P1 and P2 using IF are more relaxed
than that of the original GENSMAC code.

2.2. Solution procedure

The sequence of steps in the solution procedure purports updating the discrete
variables, starting from an initial time tn. The algorithm is described as follow

• Step 1: For the P1 method, the pressure gradient ∇p̃ is eliminated from the
formulation and the velocity at the free surfaces is calculate from Equation
(2.11). For the P2 method, the velocity at the free surfaces is normally
computed, and the pressure gradient is conserved, that is p̃ = pn, where pn is
the pressure calculated in the previous time from Equation (2.10);
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• Step 2: Calculate an intermediary velocity field ũ(x, t) in t = tn + δt. When
the P1 method is used, Equations (2.2), (2.3) and (2.4) can be used. Similarly,
when the P2 method is applied, Equations (2.6), (2.7) and (2.8) can be used;

• Step 3: Solve the Poisson equation for the potential ψ in regions that contain
fluid, and at the free surfaces, ψ is calculated from Equation (2.10) with
implicit velocity. Details of the boundary conditions for the Poisson equation
and the equations for ψ at the free surfaces can be found in [9];

• Step 4: Compute the corrected velocity field un+1 = ũ −∇ψn+1;

• Step 5: Compute the final pressure field. For the P1 method, the pressure
is computed from equation pn+1 = ψn+1/δt, and for the P2 method, the
equation is pn+1 = p̃+ ψn+1/δt;

• Step 6: Update the marker particles positions. The last step in the calcula-
tion is moving the marker particles to their new positions. This is performed
by solving ẋ = u and ẏ = v by Euler’s method. The fluid surface is defined
by a list containing these particles and the visualization of this boundary is
obtained by connecting them by straight lines.

3. Discrete Equations

Equations (1.1) and (1.2) are approximated in a staggered mesh. In this mesh,
the pressure is stored at cell centers and the components of the velocity u and
v are stored in the middle of the lateral faces. As in [11], the diffusion terms
and the pressure gradient in Equations (2.2)–(2.8) are approximated by central
differences, whereas the time derivatives are approximated by forward differences
(Euler explicit). The convective terms are discretized by VONOS scheme (see [6]),
which is a bounded upwind technique. For solving the conservation equations,
the FREEFLOW2D (see [4]) simulation environment will be used. This system is
composed of three module: a modeling module (modeler) a simulation module (sim-
ulator, which implements the full Navier-Stokes equations and mass conservation
equation) and the visualization module (visualizator).

4. Numerical Results

In this section, numerical results using the implicit formulations are presented. The
main aim is comparing P1 and P2 methods, using BI, CN and AB/CN formula-
tions, with the explicit method for problems in which Re < 1. In relation to the
explicit method, the results are encouraging, in terms of accuracy and efficiency.
The following test cases are considered.

4.1. Hagen-Poiseuille flow

The validation of the numerical results obtained by using P1 and P2 methods
with IF was performed for the flow between two parallel plates. In this test case,
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comparisons between the numerical solutions and analytic solution are feasible (see
[2]). In this simulation, the plates are separated by a distance L = 1, forming
a channel. In the beginning, the channel is empty and the fluid is injected at
the entrance region, using a parabolic velocity profile. The P1 and P2 methods
using IF were applied in three meshes defined respectively as coarse (M1, where
δx = δy = 0.1m), middle (M2, where δx = δy = 0.05m), and fine (M3, where
δx = δy = 0.025m) meshes. The results are in good agreement, on the three
meshes, with the analytic solution. In order to show the convergence of the methods
presented in this work, the relative error in the l2 norm, between the numerical
solutions and the analytic, was calculated. These results are presented in Table 1.
One can see from this table that for creep flow problems, the IF was more stable

Table 1: Results of δt and error (Er) for Hagen-Poiseuille flow for Re = 0.1 in the
meshes M1, M2 and M3.

Method M1 M2 M3

δt(s) Er δt(s) Er δt(s) Er

Explicit 1.0 × 10−4 2.5E−05 2.5 × 10−5 1.8E−06 6.25 × 10−6 1.3E−07

P1-BI 1.25 × 10−3 7.1E−04 2.5 × 10−4 3.7E−05 6.25 × 10−5 3.2 E−06

P1-CN 2.0 × 10−3 5.6E−04 5.0 × 10−4 4.5E−05 1.25 × 10−4 3.2E−06

P1-AB/CN 2.0 × 10−3 1.6E−04 5.0 × 10−4 2.5E−05 1.25 × 10−4 2.1E−06

P2-BI 1.0 × 10−2 2.5E−05 1.25 × 10−2 1.8E−06 6.25 × 10−3 1.2E−07

P2-CN 2.0 × 10−3 2.5E−05 5.0 × 10−4 1.8E−06 5.0 × 10−4 1.1E−07

P2-AB/CN 2.0 × 10−3 2.5E−05 5.0 × 10−4 1.8E−06 5.0 × 10−4 1.1E−07

than the original explicit method. Table 2 shows the δt allowed by implicit and
explicit formulations. The methods that use the formulation BI admitted values of
δt larger than the other formulations. When the Re decreases, the restriction on the
time step for the explicit method (2.12) was overcome by the P1 and P2 methods
using IF. From Table 2, it can be seen that the methods using the formulation BI
demanded a δt about 500 the 500000 larger times than the explicit method, when
Re decreases, while the formulations CN and AB/CN presented δt about 20 times
bigger, independent of Re.

Table 2: Limited of stability for δt(s) in Hagen-Poiseuille flow over the mesh M2,
with values different for Re.

Method Re = 0.1 Re = 0.01 Re = 0.001 Re = 0.0001
Explicit 2.5 × 10−5 2.5 × 10−6 2.5 × 10−7 2.5 × 10−8

P1-BI 1.25 × 10−2 1.25 × 10−2 1.25 × 10−2 1.25 × 10−2

P1-CN 5.0 × 10−4 5.0 × 10−5 5.0 × 10−6 5.0 × 10−7

P1-AB/CN 5.0 × 10−4 5.0 × 10−5 5.0 × 10−6 5.0 × 10−7

P2-BI 1.25 × 10−2 1.25 × 10−2 1.25 × 10−2 1.25 × 10−2

P2-CN 5.0 × 10−4 5.0 × 10−5 5.0 × 10−6 5.0 × 10−7

P2-AB/CN 5.0 × 10−4 5.0 × 10−5 5.0 × 10−6 5.0 × 10−7
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4.2. Container filling

In this test case, it is considered the problem of container filling by a newtonian fluid
with Re = 0.1. In this simulation a comparison of CPU time was made using the
P1 and P2 methods with IF, and the explicit method. A mesh δx = δy = 0.00050m
was used for all the methods. The gravitational field acts on the flow and the
final time of the simulations was t = 5s. The results obtained by the P1 method,
using the BI, CN and AB/CN formulations and those by P2 method using the BI
and AB/CN formulations were very similar to those of the P2 method using the
CN formulation. The comparison between the methods that use the implicit and
explicit formulations, verifying the value of δt allowed for each method, the number
of iterations and the CPU time for the time t = 0.28s, can be seen in Table 3.
Again, the implicit formulations overcame the restriction of stability of the original
explicit method. These methods used less iterations to obtain the solution at the
time t = 0.28s.

Table 3: Results for simulation of container filling. Input data employed: L =
0.05m, U = 1.0 ms−1, Re = 0.1 and t = 0.28s.

Method δt(s) Number of iteration CPU time-(m:s)
Explicit 5.0 × 10−7 559998 430 : 59
P1-BI 3.0 × 10−5 11200 41 : 52
P1-CN 1.0 × 10−5 28000 99 : 16

P1-AB/CN 1.0 × 10−5 28000 106 : 18
P2-BI 6.0 × 10−5 8960 21 : 41
P2-CN 1.0 × 10−5 28000 92 : 51

P2-AB/CN 1.0 × 10−5 28000 96 : 25

4.3. A qualitative comparison

Finally, in this test case, qualitative comparisons between numerical results with
the experiments described in [12] is assessed. For this model, a mesh of δx = δy =
0.00050m was used for all the methods, with the gravitational field acting on the
flow and the final time was t = 5s. Figure 1 presents the comparison between the
numerical solution and an experimental configuration. In this figures, the numerical
method used was the P2 method with the BI formulation. The other methods that
use the implicit formulations are not displayed because they presented results similar
to the P2 method using the formulation BI. The implicit formulations presented,
as previously, larger values for δt, overcoming the restriction of the explicit method
described by [12].

5. Conclusion

The main purpose of this work is a study of numerical schemes for solving two-
dimensional, time-dependent, viscous incompressible free surface flows. A modifi-
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a)

b)

c)

d)

Figure 1: Experimental solution (left) and numerical solution (right). In this simu-
lation, the P2 method with the BI formulation was used. a)t = 0.14s, b)t = 0.22s,
c)t = 0.26s and d)t = 0.34s.
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cation was made to the implicit treatment of boundary conditions for pressure at the
free surface. The implicit formulations presented satisfactory results for unsteady
free surface flows. The validation showed the comparison between the analytic solu-
tion and the numerical solution of the P1 and P2 methods using IF. The numerical
results shows the capacity of this semi-implicit methods in simulate fluid flow with
free surface. However, the CN and AB/CN formulations introduced numerical os-
cillations, and as a consequence, the value of δt allowed was more restricted than
that of the BI formulation. More details about the numerical oscillations of the
method CN can be found in [13]. Although the CN and AB/CN formulations have
allowed a time step larger than that of the original explicit method, the BI formu-
lation proved to be stable allowing values of δt very large. Care is recommended
in choosing the time step so that numerical accuracy is not affected. In all the
simulations, the implicit formulations overcame the value of the time step of the
explicit method and, in some cases, the δt was approximately 500000 times larger
than the one of the explicit method. The P1 and P2 methods using the implicit
formulations presented similar errors to those of the explicit method with a very
smaller number of iterations. The processing time demanded by the implicit formu-
lations was significantly smaller than those of the explicit formulation. Therefore,
the P1 and P2 methods using the implicit formulations showed to be capable of
solving viscous problems with free surfaces.

Resumo. O presente trabalho concentra-se em um estudo de métodos numéricos
para resolver escoamentos newtonianos bidimensionais, transientes, incompresśıveis
e com superf́ıcie livre. Um método de projeção é aplicado para desacoplar os cam-
pos de velocidade e de pressão. Os termos difusivos nas equações de Navier-Stokes
são tratados implicitamente por meio das formulações Impĺıcita Regressiva (IR),
Crank-Nicolson (CN ) e Adams-Bashforth/Crank-Nicolson (AB/CN ). Os termos
advectivos são tratados explicitamente por um esquema upwind de alta ordem lim-
itado. Para melhorar a estabilidade numérica, as condições de contorno para o
campo de pressão na superf́ıcie livre são tratadas implicitamente, e para o campo
de velocidade explicitamente. Os resultados numéricos mostram que o método
elimina a restrição de estabilidade do método expĺıcito original GENSMAC.
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FreeFlow2D”, Master’s Thesis, ICMC, University of São Paulo, 2004.

[10] P.J. Roache, “Fundamental of Computational Fluid Dynamics”, Albuquerque,
Hermosa Publishers, 1998.
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