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Collocation Solutions of a Weakly Singular Volterra

Integral Equation
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Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.

Abstract. The discrete superconvergence properties of spline collocation solutions

for a certain Volterra integral equation with weakly singular kernel are analyzed. In

particular, the attainable convergence orders at the collocation points are examined

for certain choices of the collocation parameters.

1. Introduction

The Volterra integral equation

y(t) =

∫ t

0

K(t, s)p(t, s)y(s)ds + g(t), t ∈ I = (0, T ], (1.1)

p(t, s) :=
sµ−1

tµ
, (1.2)

where µ > 0, K(t, s) is a smooth function and g is a given function, can arise,
e.g., in heat conduction problems with mixed boundary conditions ([2], [10]). The
case when K(t, s) = 1 has been considered in several papers. The following lemma
summarizes the analytical results for (1.1) in the case K(t, s) = 1.

Lemma 1.1. (a) [12] Let µ > 1 in (1.2). If the function g belongs to Cm[0, T ]
then the integral equation

y(t) =

∫ t

0

p(t, s)y(s)ds + g(t), t ∈ (0, T ], (1.3)

possesses a unique solution y ∈ Cm[0, T ].
(b) [16] In the above case (a), the unique solution y ∈ Cm[0, T ] is given by

y(t) = g(t) + t1−µ

∫ t

0

sµ−2 g(s)ds. (1.4)

(c) [16] However, if 0 < µ ≤ 1 and g ∈ C1[0, T ] (with g(0) = 0 if µ = 1), then
(1.3) has a family of solutions in C[0, T ] of which only one has C1 continuity.
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We note that equation (1.3) differs substantially from the well known case
of Abel-type equations whose kernels contain a singularity of the form q(t, s) =
(t − s)−α, 0 < α < 1 (see e.g. [6], [15] for comprehensive studies). For these
equations, a smooth forcing function leads to a solution which has typically un-
bounded derivatives at t = 0. As a consequence of this non-smooth behaviour, if
uniform meshes are used then the convergence order of polynomial spline colloca-
tion methods (studied in detail in [6]) is only 1 − α, independently of the degree
of the polynomials. In order to recover the optimal convergence orders one has to
use suitable graded meshes ([3], [8], [19]). Alternatively, one may keep the uniform
meshes but then use nonpolynomial spline approximating functions reflecting the
singularity; variable transformations followed by standard methods have also been
considered by several authors (e.g. [13], [14], [1], [18]). For an extensive list of
references on these and other approaches see [4].

Equation (1.3) has been the subject of several works for the case when µ > 1:
certain classes of product integration methods based on Newton-Cotes rules were
studied in [10]; Diogo et al [12] considered a fourth order Hermite-type collocation
method and Lima and Diogo [17] developed an extrapolation algorithm, based on
Euler’s method. Recently, it was shown that general collocation methods on uniform
meshes based on piecewise polynomials of degree m−1 yield convergence of order m.
In [11] it was also proved that if certain derivatives of the exact solution are zero at
the origin, then a higher order is attained at the mesh points by a special choice of
the collocation points, like the Radau II points. In this work we investigate the use
of the Gauss-Legendre points (that is, the zeros of the shifted Legendre polynomial
Pm(2s − 1)) as collocation parameters. In this case, the interesting feature is that
superconvergence does not occur at the mesh points, that is, the superconvergence
results for ODEs when using the Gauss points as collocation parameters do not
carry over to second kind Volterra equations. However, in Section 3 of this work
we give sufficient conditions for superconvergence to be attained at the collocation
points.

The above properties are in sharp contrast with the situation for Abel-type
equations for which no superconvergence properties can be obtained ([7], [6], [4]).

2. Collocation Methods

Let us consider equation (1.3), that is, (1.1) with K(t, s) = 1, and in future work
the results will be extended to a more general function K. We shall take µ > 1.

We follow the notations of [6]. Given the following partition of the interval I

{tj = jh, 0 ≤ j ≤ N ;Nh = T} ,

let σ0 := [t0, t1], σn := (tn, tn+1], 1 ≤ n ≤ N − 1 and define ZN := {tn : n =
1, . . . , N − 1}, ZN := ZN

⋃

T . Furthermore, let πm−1 denote the space of poly-
nomials of degree m − 1. The exact solution of (1.3) will be approximated in the
piecewise polynomial space

S−1
m−1(ZN ) := {u : u|σn

=: un ∈ πm−1, 0 ≤ n ≤ N − 1}, (2.1)
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whose elements, in general, will possess jump discontinuities at their knots ZN .
Consider the following finite subset of I

X(N) =

N−1
⋃

n=0

Xn, (2.2)

with
Xn := {tnj := tn + cj h : 0 ≤ c1 < . . . < cm ≤ 1}. (2.3)

The approximate solution u ∈ S−1
m−1(ZN ) will be required to satisfy the original

equation (1.3) on X(N) (set of collocation points). We thus have the following
collocation equation

u(t) = g(t) +

∫ t

0

p(t, s)u(s)ds, t ∈ X(N), (2.4)

which can be rewritten as

un(tnj) = g(tnj) +

∫ cj

0

(n + τ)µ−1

(n + cj)µ
un(tn + τh)dτ

+
n−1
∑

i=0

∫ 1

0

(i + τ)µ−1

(n + cj)µ
ui(ti + τh)dτ, (2.5)

j = 1, . . . ,m (n = 0, . . . , N − 1).

Let λl be the canonical Lagrange polynomials associated with the collocation para-
meters, defined by

λl(τ) :=

m
∏

i=1

i6=l

τ − ci

cl − ci

. (2.6)

If on each subinterval σn u is given by its Lagrange formula

un(tn + τh) :=

m
∑

l=1

λl(τ)Unl, tn + τh ∈ σn, (2.7)

where Unl := un(tn + clh), then (2.5) represents a sequence of N linear systems in
the unknowns (Un1, . . . , Unm)T , 0 ≤ n ≤ N − 1:

Unj = g(tnj) +

m
∑

l=1

(

∫ cj

0

(n + τ)µ−1

(n + cj)µ
λl(τ)dτ)Unl

+
n−1
∑

i=0

m
∑

l=1

(

∫ 1

0

(i + τ)µ−1

(n + cj)µ
λl(τ)dτ)Uil. (2.8)

We see that the integrals in (2.8) can be evaluated analytically.
Let e := y − u and denote its restriction to the subinterval σn by en. We define

‖e‖∞ := sup{|en(t)| : t ∈ σn, n = 0, . . . , N − 1}.

We have the following global convergence result [9].
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Theorem 2.1. Suppose µ > 1 in (1.2). Let u ∈ S
(−1)
m−1(ZN ) denote the collocation

approximation to the solution of the integral equation (1.3) and assume that g ∈
Cm(I). Then, for every choice of the collocation parameters {cj}, with 0 ≤ c1 <
. . . < cm ≤ 1, we have

‖e‖∞ = O(hm), (as h ↓ 0, Nh = T ). (2.9)

3. Superconvergence

In [11] we investigated the discrete superconvergence properties of the collocation
solutions for equation (1.3). By this we mean the possibility of attaining a higher
order p > m at the mesh points, by a special choice of the collocation points. We
showed that if certain derivatives of y vanish at the origin then a higher order of
the collocation error near the origin is attained. This fact together with a judicious
choice of the collocation points leads to discrete superconvergence at the mesh
points. In particular, we obtained the following result.

Theorem 3.1. Consider µ > 1 in (1.3) and let u ∈ S
(−1)
m−1(ZN ) denote the collo-

cation approximation to the solution of the integral equation (1.3). Let the col-
location parameters {cj} be the Radau II points for (0,1], that is, the zeros of
Pm−1(2s − 1) − Pm(2s − 1), where Pm is the mth degree Legendre polynomial. If
g ∈ C2m−1[0, T ] and

y(m)(0) = y(m+1)(0) = · · · = y(2m−2)(0) = 0, m ≥ 1, (3.1)

then we have local superconvergence of order 2m − 1 at the mesh points, that is,

max
tn∈ZN

|e(tn)| = O(h2m−1), (as h ↓ 0, Nh = T ). (3.2)

However, if we take as collocation parameters the Gauss-Legendre points (that
is, the zeros of the shifted Legendre polynomial Pm(2s− 1)) then superconvergence
does not occur at the mesh points.

On the other hand, we now show that the Gauss points lead to superconvergence
at the collocation points which is stated in the following theorem.

Theorem 3.2. Let µ > 1 and u ∈ S
(−1)
m−1(ZN ) denote the collocation approximation

to the solution of the integral equation (1.3), defined by (2.4), where the collocation
parameters {cj} are the Gauss points for (0,1) and let g ∈ Cm+1[0, T ]. If the m-th
order derivative of y is such that

y(m)(0) = 0, m ≥ 1, (3.3)

then we have superconvergence of order m + 1 at the collocation points, that is

max
tnj∈XN

|e(tnj)| = O(hm+1), (as h ↓ 0, Nh = T ). (3.4)
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Proof. It will be convenient to rewrite the collocation equation (2.4) in the form

u(t) = g(t) +

∫ t

0

p(t, s)u(s)ds − δ(t), t ∈ I, (3.5)

where δ is a suitable function which is zero at the collocation points δ(tnj). Moreover
δ will be smooth on each subinterval, with the degree of smoothness given by that
of g. Subtracting (3.5) from (1.3) gives the following second kind Volterra integral
equation for the error function

e(t) = δ(t) +

∫ t

0

p(t, s)e(s)ds, t ∈ I, (3.6)

which is of the type of (1.3) and whose solution is given by (cf. (1.4))

e(t) = δ(t) +

∫ t

0

sµ−2

tµ−1
δ(s)ds, t ∈ I. (3.7)

We now analyze (3.7) at t = tnj , using the fact that δ(tnj) = 0. In the case
t = t0j , since y ∈ Cm+1[0, T ] and y(m)(0) = 0, it can be proved that (cf. [11])

max
1≤j≤m

|e(t0j)| = O(hm+1). (3.8)

Consider now the case when t = tnj , n ≥ 1. By making appropriate changes of
variables in (3.7) yields

e(tnj) =
n−1
∑

i=0

h

∫ 1

0

(ti + τh)µ−2

(tnj)µ−1
δ(ti + τh)dτ

+h

∫ cj

0

(tn + τh)µ−2

(tnj)µ−1
δ(tn + τh)dτ. (3.9)

If i = 0, we have

∫ 1

0

(τh)µ−2

(tn)µ−1
δ(τh)dτ =

∫ 1

0

(

τh

tn

)µ−1
δ(τh)

τh
dτ ≤

∫ 1

0

δ(τh)

τh
dτ, (3.10)

where we have used the fact that (τh/tn)
µ−1 ≤ 1. By a similar analysis as in [11],

it can be shown that
∫ 1

0

δ(τh)

τh
dτ = O(hm). (3.11)

If i ≥ 1 we proceed as follows:
∫ 1

0

(ti + τh)µ−2

(tnj)µ−1
δ(ti+τh)dτ =

∫ 1

0

(ti + τh)µ−1

(tnj)µ−1

1

(ti + τh)
δ(ti+τh)dτ ≤

∫ 1

0

δ(ti + τh)

ti + τh
dτ.

Using an m-point quadrature rule based on the abscissas til, with remainder Eni,
for each integral, we obtain

∫ 1

0

δ(ti + τh)

ti + τh
dτ =

m
∑

l=1

bl

δ(til)

til
+ Eni = O(hm+1), (3.12)
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where we have used the fact that δ(til) = 0; on the other hand, since the cj satisfy
the orthogonality condition

∫ 1

0

m
∏

j=1

(s − cj)ds = 0 (3.13)

and the integrand is in the class Cm+1, then Eni = O(hm+1) (see e.g. [5]).
Finally, for the last integral in (3.9), we have

h

∫ cj

0

(tn + τh)µ−2

(tnj)µ−1
δ(tn + τh)dτ ≤ h

∫ cj

0

δ(tn + τh)

tn + τh
dτ. (3.14)

From (3.6) we can easily obtain the relation

|δ(t)| ≤ µ + 1

µ
sup

t∈(tn,tnj ]

|e(t)|, t ∈ (tn, tnj ], (3.15)

which, together with (3.14), gives

h

∫ cj

0

(tn + τh)µ−2

(tnj)µ−1
δ(tn + τh)dτ ≤ C∗h

∫ cj

0

δ(tn + τh)dτ = O(hm+1). (3.16)

In the analysis above we have assumed that tn > h, since the analysis for e(t), with
t near the origin, has been considered in (3.11). Summing up the contributions
(3.11), (3.12), (3.16) in (3.9) yields

|e(tnj)| ≤ hO(hm) + h
n−1
∑

i=1

|Eni| + O(hm+1)

≤ O(hm+1), n = 1, ..., N. (3.17)

From (3.17) and (3.8) we obtain the desired result (3.4).

Remark 1. We note that the result of Theorem 3.2 can be generalized as follows.
If the collocation points tij = ti + cjh are such that the collocation parameters
{cj} satisfy the orthogonality condition (3.13), then the result (3.4) remains valid.
A further example of such parameters are the Radau II points and a numerical
illustration is given in the next section (cf. Table 4).

4. Numerical Results

We have considered the numerical solution of equation (1.3), with various choices
of g(t) and, consequently, of y(t), for t ∈ [0, 2].

Example 1. µ = 1.5 and g such that y(t) = t4 + t4.5.

Example 2. µ = 1.5 and g such that y(t) = t5 + t5.4.

Example 3. µ = 1.5 and g such that y(t) = t3.
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Example 4. µ = 1.5 and g such that y(t) = t4.

Tables 1-5 illustrate the performance of the collocation method defined by (2.8)
applied to the above examples.

In Table 1 we have considered collocation in S−1
m−1(ZN ), with m = 3, applied

to Example 1. We have used the Gauss points {c1 = (5 −
√

15)/10, c2 = 1/2,c3 =
(5+

√
15)/10} as collocation parameters and the results of the first column confirm

the discrete convergence order m = 3, that is, no superconvergence at the mesh
points. However, since y′′′(0) = 0, that is, (3.3) is satisfied, local superconvergence
of order m + 1 = 4 takes place at the collocation points and this is shown in the
third column. Table 2 displays the results obtained with cubic collocation, that is,
in S−1

m−1(ZN ), with m = 4, applied to Example 2. Again we have used the Gauss
points, now given by

c1 =
35 −

√

525 + 70
√

30

70
, c2 =

35 −
√

525 − 70
√

30

70
,

c3 =
35 +

√

525 − 70
√

30

70
, c4 =

35 +
√

525 + 70
√

30

70
. (4.1)

The results of the first column confirm the discrete convergence order m = 4 (no
superconvergence at the mesh points) and the third column shows local supercon-
vergence of order m + 1 = 5 at the collocation points.

Table 1: Quadratic collocation using Gauss points Example 1: y(t) = t4 + t4.5,
t ∈ [0, 2]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h max|e(ti)| order max|e(tij)| order
0.05 1.6D − 4 1.9D − 6
0.025 2.1D − 5 3.0 1.1D − 7 4.1
0.0125 2.6D − 6 3.0 6.7D − 9 4.1
0.00625 3.2D − 7 3.0 4.1D − 10 4.0
0.003125 4.0D − 8 3.0 2.5D − 11 4.0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Table 2: Cubic collocation using Gauss points Example 2: y(t) = t5+t5.4, t ∈ [0, 2]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h max|e(ti)| order max|e(tij)| order
0.05 2.7D − 6 1.3D − 8
0.025 1.7D − 7 4.0 3.7D − 10 5.1
0.0125 1.1D − 8 4.0 1.1D − 11 5.1
0.00625 6.8D − 10 4.0 3.3D − 13 5.1
0.003125 4.3D − 11 4.0 1.0D − 14 5.0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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For completeness, we use Example 2 to illustrate the result of Theorem 3.1 in the
case of quadratic collocation. Since y′′′(0) = yiv(0) = 0, that is, (3.1) is satisfied,
local superconvergence of order 2m − 1 = 5 takes place at the mesh points, using
the Radau II points {c1 = (4 −

√
6)/10, c2 = (4 +

√
6)/10, c3 = 1} as collocation

parameters. This is shown in the first column of Table 3. The third column displays
the errors at the collocation points indicating convergence of order m + 1 = 4, in
accordance with Remark 1.

In Tables 4, 5 we illustrate the importance of conditions (3.1), (3.3) for attain-
ing superconvergence. The first column of Table 4 shows the errors for quadratic
collocation using the Radau II points, applied to Example 3, indicating third order
of convergence at the mesh points; we do not have superconvergence and this is not
surprising since y′′′(0) 6= 0 (cf. (3.1)). The third column of Table 4 shows a similar
situation with collocation based on the Gauss points, since (3.3) is not satisfied;
there we only have order 3 at the collocation points instead of order m + 1 = 4 (cf.
(3.4)).

Table 5 contains the results for Example 4, obtained with cubic collocation based
on the Radau II points (first column) and on the Gauss points (third column). Here,
the function y of Example 4 is such that yiv(0) 6= 0, therefore conditions (3.1) and
(3.3) are not satisfied. Convergence of order 4 is obtained with the Radau II points
(on the mesh) and with the Gauss points (at the collocation points), instead of the
orders 2m − 1 = 7 and m + 1 = 5, respectively (cf. (3.2) and (3.4)).

Table 3: Quadratic collocation using Radau II points Example 2: y(t) = t5 + t5.4,
t ∈ [0, 2]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h max|e(ti)| order max|e(tij)| order
0.05 2.8D − 8 2.4D − 6
0.025 8.1D − 10 5.1 1.5D − 7 4.0
0.0125 2.4D − 11 5.1 9.2D − 9 4.0
0.00625 7.3D − 13 5.1 5.7D − 10 4.0
0.003125 2.2D − 14 5.0 3.6D − 11 4.0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Table 4: Quadratic collocation. The importance of conditions (3.1), (3.3).
max |e(ti)| and max |e(tij)| for Example 3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h Radau II p Gauss p

0.05 3.3D − 6 6.0D − 6
0.025 4.2D − 7 3.0 7.5D − 7 3.0
0.0125 5.2D − 8 3.0 9.4D − 8 3.0
0.00625 6.5D − 9 3.0 1.2D − 8 3.0
0.003125 8.1D − 10 3.0 1.5D − 9 3.0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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Table 5: Cubic collocation. The importance of conditions (3.1), (3.3).
max |e(ti)| and max |e(tij)| for Example 4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h Radau II p Gauss p

0.05 3.7D − 8 9.0D − 8
0.025 2.3D − 9 4.0 5.6D − 9 4.0
0.0125 1.4D − 10 4.0 3.5D − 10 4.0
0.00625 9.1D − 12 4.0 4.0D − 11 4.0
0.003125 5.7D − 13 4.0 1.4D − 12 4.0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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