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ABSTRACT. In this work, three implementation options for the ghost cell immersed boundary method
are compared. These options are alternatives to a rather common implementation of the method that is
susceptible to numerical instability in the calculation of the bilinear interpolation in some cases. The method
is implemented for a second-order spatial discretization of the heat equation in a non-rectangular domain
and the errors for each option are analyzed in terms of the order of accuracy and the way they are distributed
in the domain. The best option, which was the only one to maintain the second order of convergence of
the discretization, is to consider non-symmetric extrapolation with bilinear interpolation, instead of using
inverse distance weighted interpolation with symmetric or non-symmetric extrapolation.

Keywords: Immersed boundary method, bilinear interpolation, inverse distance weighted interpolation,
heat equation

1 INTRODUCTION

One of the main motivations for using numerical methods for the solution of partial differential
equations is the possibility of representing complex contour geometries. However, this creates
the need to specify the boundary conditions in these geometries. A commonly adopted approach
involves utilizing a grid that conforms to the physical contour. However, even for simple geome-
tries, generating a good-quality body-conformal grid can be an iterative process requiring signif-
icant input from the person generating the grid. As the geometry becomes more complicated, the
task of generating an acceptable grid becomes increasingly difficult [19].
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2 INTERPOLATION SCHEMES FOR THE IBM

The Immersed Boundary Method (IBM) first proposed by Peskin in [23] is an alternative to the
approach described above. The method employs a Cartesian grid that is not aligned with the
physical boundary, offering versatility and efficiency for solving partial differential equations
in complex geometries [29]. There are several variations of the IBM, but in general boundary
conditions are imposed on the problem through a forcing term added to the governing equation
[12]. Over the past two decades, the IBM has gained wide acceptance and has been applied in
diverse contexts in fluid mechanics and beyond, such as electromagnetism, solid mechanics and
Brownian motion, among others [29].

In the first version of the IBM developed by Peskin for blood flow simulations the forcing term
for the boundary condition is calculated via Hooke’s Law [23]. Since then new versions and
applications have been proposed. In [10] a new way of calculating the forcing term is proposed
using an integral formulation to simulate the flow of air passing through a circular cylinder with
a moderate Reynolds number. In 1997, Mohd-Yusof [20] created a new class of IBM called
the discrete forcing approach by calculating the forcing term directly through the numerical
solution, without the need for user-defined parameters in the forcing term to impose the boundary
condition. Within this class there is the ghost cell approach, used in [18] for the solution of the
Reynolds-averaged Navier–Stokes equations (RANS). This approach implements ghost points
outside the physical domain and close to the boundary to impose the boundary conditions. In [3]
the discrete forcing approach is combined with a level set method to apply a wall model in the
stress tensor in a region close to the boundary for a Large Eddy Simulation (LES) of turbulence.

Although immersed boundary methods are often used in fluid mechanics to solve the Navier-
Stokes equations, they can also be used in other contexts. For example, [2] uses the IBM and a
finite difference discretization to solve the heat equation associated with Stefan’s problem. [8]
and [16] present finite difference schemes for solving the heat equation in non-rectangular do-
mains using level-set functions to determine the boundary of the problem. The immersed bound-
ary method can also be used with finite volume discretization as proposed in [26] and approaches
similar to Peskin’s original proposal are presented in [30] and [14]. Furthermore, the IBM can
also be used to solve the Poisson equation [6, 8, 26].

In the ghost cell method, it is necessary to extrapolate the values of the variables to the ghost
points, which can be done in the coordinate axes directions as in [9] or in the normal direction
to the boundary as in [28]. The way in which the extrapolation is carried out has implications for
the accuracy of the numerical method and may reduce its order of convergence. This fact is well
illustrated in [8] where linear, quadratic and cubic extrapolations provide convergence orders 2,
3 and 4, respectively for a fourth order spatial discretization for the Poisson and heat equations.
In the case of extrapolation normal to the boundary, the most common approach is to reflect
the ghost point across the boundary into the domain in a symmetric manner and to estimate the
value of the variable at the reflected point using an interpolation scheme. In general, bilinear and
trilinear interpolations are used for two and three dimensions, respectively. In [28] it is shown
that this extrapolation scheme combined with bilinear interpolation maintains convergence of
order 2 for a numerical scheme for the Navier-Stokes equations.

Trends Comput. Appl. Math., 26 (2025), e01833
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However, as mentioned in [21] and [17], in the standard ghost cell approach the bilinear interpo-
lation may present instability in some cases due to ill-conditioning of the Vandermonde matrix
involved, especially when the point to be interpolated is very close to the boundary. To overcome
this problem, in [17] it is proposed to use an inverse distance weighted interpolation which,
despite not presenting problems of numerical instability, has lower accuracy than bilinear inter-
polation. Another proposal to avoid instability with the Vandermonde matrix is presented in [21],
where the point to be interpolated is far from the boundary so that the four neighboring points in
the grid belong to the domain. In this case, bilinear interpolation is calculated by a simple and
robust algorithm as presented in [24] without the necessity to solve a linear system associated
with the Vandermonde matrix, and the numerical scheme maintains second order convergence.
Clearly, the issue of the preferred interpolation scheme for the IBM and its relation to the order
of convergence needs to be examined further.

In view of that, the aim of this work is to compare three versions of the ghost cell method to avoid
instability when the points to be interpolated are very close to the boundary. These three versions
are based on those presented in [21] and [17], namely: symmetric extrapolation with inverse dis-
tance weighted interpolation; non-symmetric extrapolation with inverse distance weighted inter-
polation and non-symmetric extrapolation with bilinear interpolation. For comparison purposes,
the method is used to solve the heat equation with Dirichlet boundary conditions, which allows
us to focus on the essence of the method, analyzing a problem for which there is an analytical
solution for a non-rectangular boundary, which can be used for comparison with the numeri-
cal solution obtained. The three versions are compared by analyzing the order of convergence,
the distribution of errors across the domain, as well as aspects regarding their implementation.
The method with its three versions of the ghost cell method was implemented in the Chapel
programming language (https://chapel-lang.org/) in parallel.

This paper is structured as follows: in section 2, the finite difference method and the three ver-
sions of the ghost cell method used for the numerical solution are presented; in section 3, the
analytical solutions used for comparison with numerical solutions are presented and in section 4
the numerical results obtained for the three versions of the method are presented, analyzed and
compared. Finally, our conclusions are presented in section 5.

2 NUMERICAL METHOD

Consider the heat equation (2.1) in arbitrary units with initial and boundary conditions (2.2) and
(2.3),

ut = α∇
2u in Ω, (2.1)

u(0,x,y) = w(x,y) in Ω, (2.2)

u(t,x,y) = g(x,y) in ∂Ω, (2.3)

where u is the temperature as a function of time t and the position (x,y); w is the initial condition;
g are the boundary conditions; the subscript t indicates the partial derivative with respect to time,

Trends Comput. Appl. Math., 26 (2025), e01833
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4 INTERPOLATION SCHEMES FOR THE IBM

∇2 is the Laplacian operator and α is the thermal diffusivity coefficient. To solve this equation
on a Cartesian grid with the IBM, we consider a rectangular domain D that contains Ω ⊂ R2 as
illustrated in Figure 1. The boundary condition in ∂Ω is imposed through a forcing term f that
must be calculated at each iteration of the algorithm using the ghost cell method in a similar way
to that done in [17], but with an approach using a signed distance function, inspired by [3]. To
do so, we modify (2.1)–(2.3) to

ut = α∇
2u+ f in D, (2.4)

u(t,x,y) = g(x,y) in ∂D. (2.5)

Note that the boundary condition g(x,y) is being imposed on the boundary of the rectangular
domain D.

Figure 1: Illustration of grid points in Ω and D.

For the discretization of (2.4) by the classical second order finite difference scheme for the Lapla-
cian operator and the forward Euler method for the time derivative, consider a Cartesian grid of
points (xi,y j) in D and denote by un

i j the approximation of u(tn,xi,y j) with xi = i∆x, y j = j∆y,
tn = n∆t, and ∆x = xi+1 − xi, ∆y = y j+1 − y j and ∆t = tn+1 − tn fixed. Using the notation for
numerical differentiation from [13], we discretize (2.4) in the form

δun
i j

δ t
= ∇

2
un

i j + f n
i j, (2.6)

where for each point (tn,xi,y j)

δun
i j

δ t
=

un+1
i j −un

i j

∆t
, (2.7)

∇
2
un

i j =
δ 2un

i j

δx2 +
δ 2un

i j

δy2 , (2.8)

δ 2un
i j

δx2 =
un

i+1, j −2un
i, j +un

i−1, j

∆x2 , (2.9)

δ 2un
i j

δy2 =
un

i, j+1 −2un
i, j +un

i, j−1

∆y2 . (2.10)

Trends Comput. Appl. Math., 26 (2025), e01833
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In computational fluid mechanics, the fractional step method created by Chorin [5] is widely
used for the numerical solution of the Navier-Stokes equations [1]. In the simple case of the heat
equation it can be implemented by creating an intermediate step (predictor) u∗i j at each time step
as follows:

δun
i j

δ t
=

un+1
i j −un

i j

∆t
=

un+1
i j −u∗i j +u∗i j −un

i j

∆t
= α∇

2
un

i j + f n
i j, (2.11)

which we split into two parts:

u∗i j −un
i j

∆t
= α∇

2
un

i j, (2.12)

un+1
i j −u∗i j

∆t
= f n

i j. (2.13)

As presented in [7], the stability condition for this numerical scheme is

α∆t
(

1
∆x2 +

1
∆y2

)
⩽

1
2
. (2.14)

The forcing f n
i j must be calculated in order to modify the value of u in ghost points to impose the

boundary condition. The set of ghost points is denoted by Γ and is formed by the points (xi,y j) of
the mesh such that at least one of the points (xi−1,y j), (xi+1,y j), (xi,y j−1) or (xi,y j+1) belongs
to Ω. For each point in Γ outside the physical domain of the problem, auxiliary values vn+1

i j must
be calculated through extrapolation using the intermediate step u∗ and the boundary condition
(2.3) to obtain f n

i j as

f n
i j =


vn+1

i j −un
i j

∆t −α∇
2
un

i j, in Γ,

0, outside Γ.
(2.15)

In the classical implementation of the ghost cell method, for each ghost point xG ∈ Γ one must
calculate its projection xB on the boundary ∂Ω and its reflection xP in the domain Ω so that xB

is the midpoint of the segment connecting xG and xP. In [17, 18, 28] this is done by considering
an approximation of the boundary by a polygonal line and calculating xP so that the segment
connecting xG and xP is perpendicular to the polygonal line. Another possibility used, for exam-
ple, in [4] and in the present work is to consider a level-set function and its gradient to calculate
the points xB and xP due to the ease of implementation. To do this, define ϕi j = ϕ(xi,y j) as the
signed distance function from each point of the Cartesian mesh to the boundary ∂Ω, where ϕ

is negative outside of Ω and positive in Ω. Also denote by ∇ϕ the finite difference approxima-
tion of ∇ϕ . For each ghost point xG of the Cartesian mesh, we calculate its projection xB on the
boundary in the direction of ∇ϕ(xG) as

xB = xG + |ϕ(xG)|∇ϕ(xG), (2.16)

and we calculate the reflection of xG in Ω through xB as

xP = xG +2|ϕ(xG)|∇ϕ(xG) = xB + |ϕ(xG)|∇ϕ(xG). (2.17)

Trends Comput. Appl. Math., 26 (2025), e01833
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6 INTERPOLATION SCHEMES FOR THE IBM

In several works that use the ghost cell method, such as [18] and [17], it is common to use a
simple arithmetic mean to calculate vn+1(xG):

un+1(xB) =
vn+1(xG)+u∗(xP)

2
⇒

vn+1(xG) = 2un+1(xB)−u∗(xP),

vn+1(xG) = 2g(xB)−u∗(xP). (2.18)

Note that xP in general is not a grid point (xi,y j) and therefore the value of u∗(xP) must be esti-
mated using some interpolation method as shown below. Note also that the value of un+1(xB) is
given by g(x,y), imposing the boundary condition. The classical point configuration is illustrated
in Figure 2 (a).

In the implementation proposed by [21], instead of making a symmetric reflection of the point
xG to obtain xP, it is considered that the point xP is at a distance β =

√
2∆x from xB, that is

xP = xG +(β + |ϕ(xG)|)∇ϕ(xG) = xB +β∇ϕ(xG). (2.19)

Different from that proposed in [21], in this work the extrapolation is done by calculating a
linear function that passes through xP and xB to then estimate the value in xG similar to the
extrapolation presented in [9]. Therefore, the expression for vn+1(xG) is given by

vn+1(xG) =

(
β + |ϕ(xG)|

β

)
g(xB)−

|ϕ(xG)|
β

u∗(xP). (2.20)

The advantage of choosing xP further from the boundary is that the four closest grid points are
within the domain Ω if the boundary is smooth enough. Therefore, bilinear interpolation is not
subject to ill-conditioning problems. The point configuration as proposed by [21] is illustrated
in Figure 2 (b). The detailed error analysis of the two versions of the method using the two
interpolation schemes is presented in section 4.

In summary, the algorithm for imposing boundary conditions on the ∂Ω boundary using the IBM
proceeds as follows:

1. Compute u∗i j = un
i j +α∆t∇

2
un

i j in Ω∪Γ;

2. compute vn+1
i j by extrapolation in Γ;

3. compute f n
i j by (2.15) in Ω∪Γ;

4. compute un+1
i j = u∗i j +∆t f n

i j in Ω∪Γ.

2.1 Interpolation schemes

In the present work we consider the interpolation methods used in [17], namely: inverse distance
weighted interpolation and bilinear interpolation (in the bidimensional case). We emphasize that
other methods can be used, such as least squares interpolation [22].

Trends Comput. Appl. Math., 26 (2025), e01833
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(a) Points for symmetrical extrapolation (b) Points for non-symmetrical extrapolation

Figure 2: Illustration of points in the present immersed boundary method implementations, where
◦ are grid points (xi,y j) in Ω; ♢ are grid points (xi,y j) outside Ω; ♦ are ghost points xG; ▲ are
boundary points xB; • are reflected points xP.

For inverse distance weighted interpolation, denote by uk the value of u at the m points chosen
for interpolation, Rk the distance from the points to xP and Rmax = max{Rk}. The expression for
u∗(xP) is given by

u∗(xP) =
∑

m
k ckuk

∑
m
k ck

, (2.21)

where

ck =

(
Rmax −Rk

RmaxRk

)p

. (2.22)

To avoid numerical instability in the denominator of (2.22), if the distance R1 from the closest
point to xP is less than min(∆x,∆y)×10−3, we define c1 = 1 and ck = 0 for the other coefficients.

The parameter p is chosen in order to distribute the influence of points used depending on their
distance from the point to be interpolated. According to [17], p= 1 and p= 1/2 are good options
because each point contributes more equally to the interpolation. In the next section, a study will
be made on the best values of p and the number of points for interpolation for the problem
described here.

One of the advantages of this interpolation method is that the coefficients are calculated only
once. Although this is possible for other interpolation methods, as shown for least squares in
[27], in the case of inverse distance weighted interpolation the calculation of the coefficients is
straightforward from equation (2.22) without the need to solve an associated linear system.

Trends Comput. Appl. Math., 26 (2025), e01833



i
i

“1833” — 2025/1/15 — 23:34 — page 8 — #8 i
i

i
i

i
i

8 INTERPOLATION SCHEMES FOR THE IBM

For bilinear interpolation, the value of u∗ is approximated by a polynomial of the form

u∗(x,y) = a0 +a1x+a2y+a3xy, (2.23)

where the coefficients a0, a1, a2 and a3 are calculated so that u is exact at the four points chosen
for interpolation. In the most general cases, the coefficients are calculated by solving a linear
system that can be ill-conditioned for small values of ∆x and ∆y. However, if the point to be
approximated belongs to a rectangle whose vertices are the interpolating points, the value of u
can be calculated by a simple algorithm such as the one described in [24].

3 ANALYTICAL SOLUTIONS

To evaluate the error of the immersed boundary method, we compare the numerical solution with
the analytical solution for two different initial and boundary conditions where the domain Ω is
a circle of radius b centered at the origin. The first initial condition is the paraboloid w(x,y) =
b2−x2−y2 and the second initial condition is w(x,y) =H, where H is a positive constant. In both
cases, the boundary condition is g(x,y) = 0. Therefore, while the first condition is continuous
throughout the domain, the second condition presents a jump discontinuity at the boundary.

Denoting by Jn(r) the Bessel function of first kind and order n ∈N and by zn, n ∈N, the positive
zeros of the Bessel function J0, the analytical solution of (2.1)–(2.3) for the paraboloid initial
condition is

u(t,x,y) = 4b2
+∞

∑
n=1

e−α(zn/b)2t J2(zn)

z2
nJ2

1 (zn)
J0

( zn

b

√
x2 + y2

)
, (3.1)

and the solution of (2.1)–(2.3) for the initial condition with boundary jump is

u(t,x,y) = 2H
+∞

∑
n=1

e−α(zn/b)2t 1
znJ1(zn)

J0

( zn

b

√
x2 + y2

)
. (3.2)

For more details about the Bessel functions and the derivation of the analytical solutions above
see [11].

4 NUMERICAL EXPERIMENTS

As mentioned previously, this section presents and analyzes the results of the numerical tests
for the three versions of the ghost cell method considered in this work: symmetric extrapolation
with inverse distance weighted interpolation; non-symmetric extrapolation with inverse distance
weighted interpolation and non-symmetric extrapolation with bilinear interpolation. For the nu-
merical method we set ∆x = ∆y and a time step ∆t = 0.9∆x2/α which satisfies the stability
condition (2.14). In this work, we chose α = 0.09, which produced a suitable ∆t (neither too
small nor too large) for graphically depicting the results of intermediate stages between the ini-
tial condition and the asymptotic state u(∞,x,y) = 0. Other values in the range 0.01–0.5 were
tested and did not change any of our results. The domain Ω is the unit circle centered at the
origin, that is b = 1 for the analytical solutions (3.1) and (3.2).

Trends Comput. Appl. Math., 26 (2025), e01833
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However, first we look at the choice of the parameters p and m of the inverse distance weighted
interpolation in the two versions of the ghost cell method that use it.

4.1 Calibration of parameters in the inverse distance weighted interpolation

To calibrate the parameters p and m of the interpolation method we compute a mean radial error
in circles centered at the origin. For each r > 0 we define the mean error as

ϵ (t,r) =
1

2π

∫ 2π

0

|ũ(t,r,θ)−u(t,r,θ)|
umax

dθ , (4.1)

where ũ(t,r,θ) is the value estimated by the inverse distance weighted interpolation for u(t,r,θ)
and umax is the maximum value of the analytical solution. Since the interpolation is done close
to the boundary, r should be chosen close to 1. To take into account the two possibilities of
extrapolation, it was decided to calculate the average interpolation error for the initial condition
w(x,y) = 1− x2 − y2 for r1 = 1−∆x/2 and r2 = 1−

√
2∆x considering ∆x = ∆y = 0.01.

Figure 3 shows the average interpolation errors for r1 considering m−1 grid points in Ω and one
point at the boundary. In [17] it is mentioned that 3 or 4 points are sufficient for good accuracy.
However, in this test the smallest errors are obtained for 6, 7 and 8 points in the interpolation.
Figure 4 shows the average interpolation errors for r2 considering only grid points in Ω. We can
see that in this case the errors are smaller than those presented in Figure 3, which indicates that
moving the reflected point xP away from the boundary can reduce the error of the ghost cell
method. This hypothesis will be corroborated in the next section. As in the previous case, using
3 or 4 points for interpolation does not seem to be the most appropriate choice since using more
points reduces the error. For the tests performed below, we choose the value of p that minimizes
the error ϵ for each value of m.

0.000
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0.005

0.006

3 4 5 6 7 8 9

𝜖

𝑚

𝑝 = 0.4
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𝑝 = 0.6
𝑝 = 0.7

𝑝 = 0.8
𝑝 = 0.9

𝑝 = 1.0
𝑝 = 1.1

Figure 3: Mean error for inverse distance weighted interpolation in r1 = 0.995 for different values
of p and m.

Trends Comput. Appl. Math., 26 (2025), e01833
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10 INTERPOLATION SCHEMES FOR THE IBM
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𝑝 = 0.7
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Figure 4: Mean error for inverse distance weighted interpolation in r2 = 0.986 for different values
of p and m.

4.2 Error analysis

For the convergence order analysis, denote by E1(∆x, t) the error in the L1 norm of the numerical
solution in the domain Ω at time t, and analogously denote by E∞(∆x, t) the error in the L∞ norm
according to [15]. The standard procedure for estimating the order of convergence as presented
in [25] is to calculate

q(∆x) = log2

(
E(∆x,1)

E(∆x/2,1)

)
, (4.2)

for successive refinements of the mesh (∆x,∆x/2,∆x/4, ...), and then consider the order of con-
vergence q as the average of the values obtained by (4.2). In this work we consider ∆x = 0.04,
∆x = 0.02, ∆x = 0.01 and ∆x = 0.005 in (4.2) to estimate the rate of convergence in both norms.

Case 1: Parabola

Let us consider the initial condition w(x,y)= 1−x2−y2 for the method. Figure 5 shows the errors
E1 (left) and E∞ (right) at t = 1 for different values of ∆x for the symmetric extrapolation with
inverse distance weighted interpolation and Table 1 shows the estimated order of convergence;
the lines with slopes of 1 and 2 are also shown for reference. We see that m = 7 and m = 8
provide the smallest errors with similar results and the largest values of q1 near to 1.7. However
m = 8 with p = 1.0 provides the smallest value of q∞. When using 5 or 6 points the errors are
larger and the order of convergence is far from 2 in both norms. Actually, q∞ is less than 1 in
the four parameter options tested for symmetric extrapolation with inverse distance weighted
interpolation. Therefore, the order of convergence of the spatial discretization is not preserved.

Figure 6 shows the errors E1 (left) and E∞ (right) at t = 1 for different values of ∆x for non-
symmetric extrapolation with inverse distance weighted interpolation and the lines with slopes
of 1 and 2 for reference. We see that the errors shown in Figure 6 are smaller than those shown in
Figure 5. Therefore, as expected from the results of the previous subsection, moving the reflected

Trends Comput. Appl. Math., 26 (2025), e01833
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Figure 5: Errors at t = 1 for initial condition w(x,y)= 1−x2−y2 using symmetrical extrapolation
with inverse distance weighted interpolation: (a) m = 5, p = 0.4; (b) m = 6, p = 0.6; (c) m = 7,
p = 0.9; (d) m = 8, p = 1.0; (e) line with slope 1; (f) line with slope 2.

Table 1: Convergence order for initial condition w(x,y) = 1− x2 − y2 using symmetric extrapo-
lation and inverse distance weighted interpolation.

Order m = 5, p = 0.4 m = 6, p = 0.6 m = 7, p = 0.9 m = 8, p = 1.0
q1 1.12 1.23 1.67 1.73
q∞ 0.91 0.92 0.89 0.78

point away from the boundary increases the accuracy of the method when using the inverse
distance weighted interpolation. Furthermore, Table 2 shows a gain in the order of convergence
in comparison with Table 1, where the order q1 is closer to 2 and the order q∞ is greater than 1
but still far from 2.

Table 2: Convergence order for initial condition w(x,y) = 1− x2 − y2 using non-symmetric ex-
trapolation and inverse distance weighted interpolation.

Order m = 5, p = 0.9 m = 6, p = 0.9 m = 7, p = 0.7 m = 8, p = 0.8
q1 1.80 1.80 1.85 1.71
q∞ 1.13 1.16 1.28 1.22

Figure 7 shows the errors E1 (left) and E∞ (right) for the best results of symmetric and non-
symmetric extrapolation with inverse distance weighted interpolation in comparison to those
obtained for non-symmetric extrapolation with bilinear interpolation and the lines with slopes of
1 and 2 for reference. We see that the errors with bilinear interpolation are smaller than those
obtained with inverse distance weighted interpolation, especially in the L∞ norm. In fact, the
estimated convergence order in the L1 norm is 1.88 and in the L∞ norm is 1.95, that is, the
convergence order of the spatial discretization is maintained in both norms.

Trends Comput. Appl. Math., 26 (2025), e01833



i
i

“1833” — 2025/1/15 — 23:34 — page 12 — #12 i
i

i
i

i
i

12 INTERPOLATION SCHEMES FOR THE IBM

10−5

10−4

10−3

10−2

10−1

0.005 0.010 0.020 0.040

𝐸
1

Δ𝑥

(a)
(b)
(c)

(d)
(e)
(f)

10−5

10−4

10−3

10−2

10−1

0.005 0.010 0.020 0.040

𝐸
∞

Δ𝑥

(a)
(b)
(c)

(d)
(e)
(f)

Figure 6: Errors at t = 1 for initial condition w(x,y) = 1−x2 −y2 using non-symmetrical extrap-
olation with inverse distance weighted interpolation: (a) m = 5, p = 0.9; (b) m = 6, p = 0.9; (c)
m = 7, p = 0.7; (d) m = 8, p = 0.8; (e) line with slope 1; (f) line with slope 2.

To better understand the results shown above, let us analyze the absolute error ε(tn,xi,y j) =

|un
i j −u(tn,xi,y j)| at each grid point in the domain for some instants of time. Figure 8 shows the

absolute error at each grid point for t = 0.2 and t = 0.4 with ∆x = 0.01, symmetric extrapolation
and inverse distance weighted interpolation for m = 8 and p = 1.0. We can see that the error is
not distributed uniformly over the domain, with regions (in red) near the boundary where the
error is on the order of 10−3 and others (in blue) on the order of 10−7. In fact, the blue lines near
the boundary divide regions where un

i j > u(tn,xi,y j) from others where un
i j < u(tn,xi,y j). This

may explain the low order of convergence in the L∞ norm.
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Figure 7: Errors at t = 1 for initial condition w(x,y) = 1− x2 − y2 using: (a) symmetric extrap-
olation with m = 8, p = 1.0; (b) non-symmetric extrapolation with m = 7, p = 0.7; (c) non-
symmetric extrapolation with bilinear interpolation; (d) line with slope 1; (e) line with slope 2.
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Figure 8: Errors at each grid point for some times t using symmetrical extrapolation with inverse
distance weighted interpolation with m = 8, p = 1.0, considering the initial condition w(x,y) =
1− x2 − y2.
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Figure 9: Errors at each grid point for some times t using non-symmetrical extrapolation with
inverse distance weighted interpolation with m = 7, p = 0.7, considering the initial condition
w(x,y) = 1− x2 − y2.

On the other hand, as can be seen in Figure 9, when using non-symmetric extrapolation with
inverse distance weighted interpolation the errors at each grid point are distributed more homo-
geneously near the boundary. In fact, in the green region close to the boundary the error varies
from 10−5 to 10−4, without the oscillations seen in the Figure 8. Furthermore, it is possible to
see clearly the error propagating from the boundary to the center of the domain as the blue region
decreases in size from t = 0.2 to t = 0.4, indicating an increase in error.
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Similar results to those in Figure 9 occur for non-symmetric extrapolation with bilinear inter-
polation as can be seen in Figure 10, but with the errors at each grid point even smaller and
better distributed near the boundary. Therefore, the ghost cell version with non-symmetric ex-
trapolation and bilinear interpolation provided the best results considering the initial condition
w(x,y) = 1− x2 − y2.
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Figure 10: Errors at each grid point for some times t using non-symmetrical extrapolation with
bilinear interpolation considering the initial condition w(x,y) = 1− x2 − y2.

Case 2: Discontinuity at boundary

Let us consider the initial condition w(x,y) = H = 0.9 for the method. Figure 11 shows the
errors E1 (left) and E∞ (right) at t = 1 for different values of ∆x for the symmetric extrapolation
with inverse distance weighted interpolation; the lines with slopes of 1 and 2 are also shown
for reference. As in the previous case, the smallest errors occur for m = 7 and m = 8. Also, the
estimated order of convergence presented in Table 3 is very similar to those in Table 1 which
indicates the consistency of the method even for an initial condition with discontinuity at the
boundary.

Table 3: Convergence order for initial condition w(x,y) = H using symmetric extrapolation and
inverse distance weighted interpolation.

Order m = 5, p = 0.4 m = 6, p = 0.6 m = 7, p = 0.9 m = 8, p = 1.0
q1 1.08 1.19 1.65 1.74
q∞ 0.92 0.92 0.90 0.79

Figure 12 shows the errors E1 (left) and E∞ (right) at t = 1 for different values of ∆x for non-
symmetric extrapolation with inverse distance weighted interpolation and the lines with slopes of
1 and 2 for reference. Also, Table 4 shows the estimated order of convergence. Again, the results
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Figure 11: Errors at t = 1 for initial condition w(x,y) = H using symmetrical extrapolation with
inverse distance weighted interpolation: (a) m= 5, p= 0.4; (b) m= 6, p= 0.6; (c) m= 7, p= 0.9;
(d) m = 8, p = 1.0; (e) line with slope 1; (f) line with slope 2.

obtained show that moving the reflected point away from the boundary improves the accuracy of
the method, even for the initial condition with a discontinuity at the boundary.
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Figure 12: Errors at t = 1 for initial condition w(x,y) = H using non-symmetrical extrapolation
with inverse distance weighted interpolation: (a) m = 5, p = 0.9; (b) m = 6, p = 0.9; (c) m = 7,
p = 0.7; (d) m = 8, p = 0.8; (e) line with slope 1; (f) line with slope 2.

Figure 13 shows the errors E1 (left) and E∞ (right) for the best results of symmetric and non-
symmetric extrapolation with inverse distance weighted interpolation compared to those obtained
for non-symmetric extrapolation with bilinear interpolation and the lines with slopes of 1 and 2
for reference. Again, we see that the errors with bilinear interpolation are smaller than those
obtained with inverse distance weighted interpolation, especially in the L∞ norm. The estimated
convergence order in the L1 norm is 1.83 and in the L∞ norm is 1.9, which are only slightly
smaller than the values obtained for the parabolic initial condition.
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Table 4: Convergence order for initial condition w(x,y) = H using non-symmetric extrapolation
and inverse distance weighted interpolation.

Order m = 5, p = 0.9 m = 6, p = 0.9 m = 7, p = 0.7 m = 8, p = 0.8
q1 1.72 1.71 1.76 1.66
q∞ 1.11 1.15 1.26 1.21
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Figure 13: Errors at t = 1 for initial condition w(x,y) = H using: (a) symmetric extrapolation
with m = 8, p = 1.0; (b) non-symmetric extrapolation with m = 7, p = 0.7; (c) non-symmetric
extrapolation with bilinear interpolation; (d) line with slope 1; (e) line with slope 2.

Figure 14 shows the absolute error ε(tn,xi,y j) at each grid point for t = 0.2 and t = 0.4 with
∆x = 0.01, symmetric extrapolation and inverse distance weighted interpolation. The errors are
larger than those presented in Figure 8, which is justified by the discontinuity at the boundary.
Furthermore, the error is also not distributed uniformly near the boundary.

Figure 15 shows the absolute error at each grid point for t = 0.2 and t = 0.4 with ∆x = 0.01,
non-symmetric extrapolation and inverse distance weighted interpolation. As with symmetric
extrapolation, the errors are larger than those obtained in Case 1. In the present (discontinuous)
case, however, there is a blue line near the boundary where the error is small. This occurs because
in the center of the domain the numerical solution satisfies un

i j > u(tn,xi,y j) whereas, near the
boundary, un

i j < u(tn,xi,y j), reflecting the jump in the initial condition.

Figure 16 shows the absolute error at each grid point for t = 0.2 and t = 0.4 with ∆x = 0.01,
non-symmetric extrapolation and bilinear interpolation. The results are quite similar to those
presented in Figure 15, but the errors are slightly smaller and more evenly distributed near the
boundary. Again, the non-symmetric extrapolation with bilinear interpolation presents the best
results among the options tested for the initial condition w(x,y) = H.
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(b) t = 0.4

Figure 14: Errors at each grid point for symmetrical extrapolation with inverse distance weighted
interpolation with m = 8, p = 1.0, considering the initial condition w(x,y) = H.
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Figure 15: Errors at each grid point for non-symmetrical extrapolation with inverse distance
weighted interpolation with m = 7, p = 0.7, considering the initial condition w(x,y) = H.
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Figure 16: Errors at each grid point for non-symmetrical extrapolation with bilinear interpolation
considering the initial condition w(x,y) = H.
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5 CONCLUSIONS

Among the tested options of the ghost cell method for the heat equation, considering symmetric
extrapolation with respect to the boundary and using inverse distance weighted interpolation
provided the worst results with the order of convergence below 1 in the L∞ norm. Considering a
non-symmetric reflection of the ghost point with respect to the boundary so that the point to be
interpolated is further away from the boundary provided an accuracy gain for the method when
using inverse distance weighted interpolation; however, the order of convergence of the spatial
discretization was not maintained. The best option, which was able to maintain the second order
of convergence of the discretization, is to consider non-symmetric extrapolation with bilinear
interpolation, since in this case the interpolation can be done with a simple algorithm that is not
susceptible to instability.
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